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ABSTRACT

Part I of this report discusses a computer-oriented methodology

for deriving minimal cut and path set families associated with arbitrary

fault trees. Part II describes the use of the Fault Tree Analysis

Program (FTAP), an extensive FORTRAN computer package that implements

the Part I methodology. An input fault tree to FTAP may specify the

system state as any logical function of subsystem or component state

variables or complements of these variables. When fault tree logical

relations involve complements of state variables, the analyst may

instruct FTAP to produce a family of prime imp•ioants, a generalization

of the minimal cut set concept. FTAP can also identify certain sub-

systems associated with the tree as system modules and provide a

collection of minimal cut set families that essentially expresses the

state of the system as a function of these module state variables.

Another FTAP feature allows a subfamily to be obtained when the family

of minimal cut sets or prime implicants is too large to be found in

its entirety; this subfamily consists only of sets that are

interesting to the analyst in a special sense. K
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INTRODUCTION

The analyst who seeks to determine reliability characteristics

of a complex system, such as a nuclear reactor, in terms of the

reliability characteristics of its subsystems and components confronts

a number of difficult tasks. One task involves identification either

implicitly or explicitly, of logical modes of system si'. .wis or

failure, that is, various distinct combinations of subsystems whose

mutual success or failure implies success or failure of the entire

system. Minimal cut set and path set families, tools familiar to

reliability analysts for some time, provide an explicit representation

of these modes. These families are useful not only re~valuating

reliability characteristics of a system but also as tool to

guide system modifications for enhancing reliability.

A widely used concept in reliability analysis of complex systems

is that of a fault tree. Fault tree methods are based on the observa-

tion that the system state, either working or failed, can usually be

expressed as a Boolean relation between states of several large,

readily identifiable subsystems. The state of each subsystem in

turn depends on states of simpler subsystems and components which

compose it, so the state of the system itself is determined by a

hierarchy of logical relationships between states of subsystems.

A fault tree is a graphical representation of these relationships.

At the lowest level of the hierarchy are sulsystems whose success or

failure dependence is not further described. If reliability informa-

tion is available for these lowest level subsystems, then it may be

possible to use this information to deduce reliability characteristics

of the system itself.

S-I
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An analyst who prepares a system fault tree often does so with

the intention of utilizing it to obtain certain minimal cut (or path)

set families in terms of these lowest level subsystems and components.

Part I of this discussion outlines a computer-oriented methodology

for deriving such families for an arbitrary fault tree. Part II

describes the use of the Fault Tree Analysis Program (FTAP), an

extensive computer package, written mostly in FORTRAN, which implements

the Part I methodology.

FTAP has a number of useful features that make it well-suited

to nearly all fault tree applications. An input fault tree to this

program may specify the system state as any logical function of sub-

system or component state variables or complements of these variables;

thus, for instance, exclusive -. or type relations may be formed.

When fault tree logical relations involve complements of state

variables, the concept of a minimal cut set family is no longer

particularly useful, so in this case the analyst may instruct FTAP

to produce a family of prime implicants, a generalization of the

minimal cut set concept. The program offers the flexibility of

several distinct methods of generating cut set families, and these

methods may differ considerably in efficiency, depending on the

particular tree analyzed. FTAP can also identify certain subsystems

as system modules and provide a collection of minimal cut set families

that essentially expresses the state of the system as a function of

these module state variables. This collection is a compact way of

representing the same information as contained in the system minimal

cut set family in terms of lowest level subsystems and components.

Another feature allows a useful subfamily to be obtained when a family
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of minimal cut sets or prime implicancs is too large to be found

in its entirety; this subfamily may consist of only sets not con-

taining more than some fixed number of elements or only sets that are

"interesting" to the analyst in a special sense. Finally, the analyst

can modify the input fault tree in various ways by declaring state

variables identically true or false.

A number of computer programs are currently available for obtaining

minimal cut set families from fault trees, and some of these programs

are mentioned in the discussion of Part I. One very capable package

that deserves special mention is the SETS program developed by

Dr. Richard Worrell of Sandia Laboratories [18], In addition to

fault trde analysis, SETS manipulates arbitrary Boolean expressions.

For fault tree work, several features of FTAP and SETS are similar.

and both programs have been used with good results during the past

year in nuclear reactor safety studies conducted by Dr. Howard Lambert

of the Lawrence Livermore Laboratories.

!z(
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PART I

METHODS FOR COMPUTER-AIDED FAULT TREE ANALYSIS

The first two sections below essentially provide notation and

background information for the procedures presented in Sections 1.3

and 1.4. The notation introduced in Section I.1 has been chosen

both to reflect the computer implementation of these procedures and

to relate their various operations to manipulation of Boolean ex-

pressions. In Section 1.2, fault trees and implicant families are

formally defined, and two quite well-known fault tree algorithms,

MOCUS and MICSUP, are reviewed.

The reader who is primarily interested in using FTAP should look

over Section 1.1 and Subsections 1.2.1, 1.2.2, 1.3.1, 1.3.2, and 1.4.4

before skipping to Part II.

I.1 Boolean Expressions

The reader is assumed to be familiar with the rudiments of Boolean

algebra; a refcrence such as [16], for instance, is more than adequate

as background. Let xl, ... , xq be Boolean variables independently

taking on values of 0 or 1 , and let x • (xl, ... , x ) be a vector

of O's and l's representing an arbitrary choice of these values.

We denote complementation by negation of subscripts: For any u

in the set U - (Io .... , q] , x (OF - x ) is written as x.
U U --U

The index set for complements is -U 2 ., ..- q] ,and (u,-u)

is a complementary pair of indices.

SjI
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Expressions may be formed using x, .... x , x ... ,X

and the ordinary Boolean relations of product and sum. An arbitrary non-

empty family I of subsets of U U (-U) (not necessarily distinct) is

identified with the Boolean sum-of-products expression

Sr[ x i
Tel itl

The notation /I/x denotes the value of this expression for a given

vector x of O's and l's , that is,

/11x Emax min x n x,- el (I i fI ItT itl

/l/ may then be taken as a Boolean function mapping each vertex of

the q-dimensional unit cube into 0 or 1 . Given nonempty families

I , 3 , and K of subsets of U U (-U) , /I/ = IJI means that for all

x /I/n /-/n . Similarly, if for all x /I/x - /J/x + /K/x

(/I/n - /3/n • /K/n) , write /I/ /F / + /K/ (/I/ /J/ • /K/) . For

the null family (0) we define /0/ ' 0 ; although for the family con-

taining only the empty set ([01) , /[r]/ is left undefined.

The union of families I and J clearly has the property

/II U J3/ / / + /j/

Now suppose U - {l,2,3} and T1 - [(2,31] 12 - [(1,2,31] and

13 - [{-1,-3,3}] For any x i(xx 2 ,x 3 ) , /I3/x - xx_ 3 3 - 0 ,

so /I1 U 12U U 13 1 U 12/ ,and 13 need not be considered

further. Thus to simplify the discussion, it is assumed that no set

of a fcily contains a complementary pair; whenever a new family is

constructed, any sets containing complementary pairs are simply eliminated.
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In the example above it is also true that for all x

/IfI/x /12 U 13 /x , since (2,31 C (1,2,31 , and thus /I /x - I

whenever /1 2 /x - I . A family is said to be minimal if all sets are

distinct and for any two sets of the family, neither is a subset of the

other. For any family I , let m[1] (the "minimization" of 1) be the

minimal family obtained by eliminating duplicate sets and those which

contain another set of I . For instance, m[[{2,3},[l,2,3}]I [(2,31]

Of course, for any I , /m[l]/ /I/

Next, the product family Ix J of two families 1 # 0 and

J # 0 is defined by [I U J I I v I , J e J] ; that is, I x J consists

of all possible sets that may be formed by taking the union of a set

from I and a set from J , excluding unions which contain comple-

mentary pairs. The product is assumed to be empty if either I or J

is empty. Evidently, 'I x J/ /I/ • /J/ since for all x

(IE1 iel JEJ jeJ

KETxJ kcK k

We will need one additional concept. Given a nonempty family I

of subsets of U U (-U) , the dual family of I , denoted by d[I]

consists of all distinct sets J such that J f1 I 0 for each I e I
and no subset of J has this property. By definition, d[1j is always

minimal, and though I may not be minimal, it is not difficult to

see d[I] - dm[1]] . In general, d[d[I] # T , though there is one

important case in which equality holds: If 7 is a minimal family

of subsets of U (rather than U U (-U)) then I is called a

clutter, anl d[L] is then known as the blocker of I , usually
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written as b(I] . It can be shown [5] that b[b[L]] - If I

consists of subsets of U U (-U) , however, then d[i] may be empty;

for instance, let I - [{-l},{lfli

The dual family is useful because it allows us to relate an

expression in product-of-sums form to a sum-of-products form. Some

thought indicates that for all x

", n X, x n i
T IE ici l l] iEx

and

ITI ic I led[1] LEI

The following simple propositions will be useful later on:

Proposition I.1.1:

If I 0 0 then for all x , 1 - /d[I]/(l -x) - /I/x , where

1 x • is the vector (1 - xI, ... , i - xn)

This is true because De Morgan's Law gives

x xi- x (-i),
Iel icl Id- iLI

and the value of the expression on the right equals

1 - [ li (1l- x)

Ied[i] iel

which is I - /d[I]/(l-x)
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I Proposition 1.1.2:

If I# 0 and J #0 , then

d[I U J] - m[d[I] x d(J]] .

It is easy to see that d[I U J] C d[l] x d[J] , and each set of

d(1] d(J] equals or contains a set of d[I U J] , so the above

proposition follows. A corollary is:

Proposition 1.1.3:

For I 0 0 and J # 0 if d[d[I]] - I and d[d[J]] i J then

did[1] U d[J]] mr[ x J1

1.2 Fault Tree Fundamentals

Some of the terminology and notation of Subsection 1.2.1 is not

in standard use for fault tree work, partly because fault trees are

traditionally defined in a manner that does not permit system failure

to depend on complements of Boolean state variables for subsystems or

components. Subsection 1.2.2, which presents the MOCUS and MICSUP

methods in the context of this notation and terminology, serves as

a useful introduction to the algorithms of Section 1.4. The final

subsection, 1.2.3, formalizes the idea of a subfamily of "interesting"

cut sets.

I I I ' ' ' ' ' ' 'i
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1.2.1 Fault Tree Definitions

Formally, a fault tree is an acyclic directed graph (U,A)

where U is the set of nodes and A is the set of arcs. Any pair

of nodes may be joined by at most a single arc, which may be either a

regular arc or a complementing arc. Nodes having no entering arcs we

call basic nodes, and those having one or more entering arcs are called

gate nodes. Those which have no leaving arcs are top nodes; a fault

tree usually has only a single top node. The tree is drawn with arc

paths directed upward from basic nodes and terminating at the top

node. Nodes are numbered by consecutive positive integers, with gates

numbered first. Also, associated with each gate is a logic indicator,

a positive integer £ that may take on any value between 1 and the

number of entering arcs for that gate.

Figure 1 presents a typical fault tree to illustrate the above

terminology. Basic nodes are denoted by circles and gate nodes by

rectangles with node 1 as the top. All arcs are regular with the

exception of the complementing arc joining nodes 6 and 4, and this

arc is distinguished by the symbol "-." The logic indicator for each

gate node appears in the lower half of the rectangle; I ' £3

and Z8 are all I , and Z2 P Z4 , £5 , and 16 are equal to 2.

We say that node v is a subnode of node u if there is an arc

path directed upward from v to u , and v is an immediate subnode

of u if there is a single upward arc from v to u . Nodes 7, 8,

12, 13, and 14, for instance, are subnodes of node 5; whereas, 7 and 8

are the immediate subnodes of 5. When v is a subnode (immediate

subnode) of u , u is sometimes referred to as a supernode

(imdit sueioe of
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Finally, given a set of nodes V C U , a downward order on V

is any-complete ordering (J-) of nodes of V such that for any
d

v , w E V , v • w implies v is not a subnode of w . On the other

hand, if w ý. v implies v is not a subnode of w , then the order

S(>) is an upward order. Thus, for V - (2,3,4,5} , 2 - 3 A 5 A 4

U U Uis a downward order and 5 - 4 9 3 9 2 is an upward order.

A fault tree is a convenient representation of a system of Boolean

expressions. Let the set of nodes be U - U1, ... , p - lp,p + 1, ... , q)

where G - {1, ... , p) are gate nodes and B- {p + i, ... , q} are

basic nodes. With the u h node we associate the Boolean variable xu

If u is a basic node, then x may take on the value 0 or 1
U

independently of the values of other node variables; thus,

b ... , x) is an arbitrary vector of O's and l's whose
p+ q

elements are a particular choice of these values. On the other hand,

if u is a gate node, then the value of x ultimately depends on

values of the independent basic node variables; that is, x is au

Boolean function of the vector b . Gate variable values are determined

by the following scheme: Let D be a set of integers representing
u

the immediate subnodes of u . If node v is joined to node u by

a regular arc then v e D ; if v is joined to u by a complementing

arc then -v e D . Note that since only a single arc can join any

two events in the tree, D contains no complementary pair (v,-v)
U

The node definition fanily V(Zu,DU) is a family of subsets of

U U (-U) that consists of all possible sets of size X that mayu

be formed from the elements of D where Z is the logic indicatoru P

for node u . The value of x is determined by
u



lx.
IEV(Zu,D) ic

Each integer i c I may thus be positive or negative, with

xi U(1 - xi) An informal statement of this relation is that

th ,the u gate node is "true" iff 9. or more of its inputs are "true."

The logic indicator satisfies 1 < Z < #D u, where #D represents

the number of elements in D . The value k - 1 corresponds to
u u

the "OR" relation between immediate subnode variables (or their

complements); that is,

i cD X
u

whereas, k - #D represents the "AND" relation,

U U
x -1 X

If we apply De Morgan's Law to the general expression for x

u a gate node, a similar expression may be obtained for xu . Let

D - -D {-i Ii e D } ThenD-u -u u

X-1 x • i
U- IeV(#Du-.u+l,Du) icI

Since variables x and x are each associated with node u , it
u -U

i is coavenient to call both indices u and -u events; -u is the

compoimentary event for node u
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Let x - (Xl, ... , X p*,xpxp+lp ... , x ) be a vector of O's

and l's Using the notation developed in Section 1.1, x will be

said to be consistent with ':he fault tree if for all gate nodes

u E G , x W /V(Zu,Du)/x . Thus the set of all vectors x consistent

with the fault tree is a subset of vertices of the q-dimensional unit

cube that represents all logically possible combinations of states

of the system and its subsystems and components. If x and x'

are both consistent with the fault tree and have the same values for

basic node variables (i.e., x x x) , then it
p+l p~l q q

will be the case that x - x' . So we might write a consistent vector

as x(b) - (xl(b), ... , xp(),Xp(b),b) for some vector

b - (x 1 +I, "'', Xq) of values for basic node variables.

A subset F of U U (-U) is called an implicant set (or just

impZicant) for event i if x1 - 1 for every vector x consistent

with the fault tree such that /[FI/x - 1 . A family F of subsets

of U U (-U) is termed an implioant fcanily for event i if for all

consistent x , xi - /F/x . Thus an implicant family for event i

is a particular collection of implicants for event i . Naturally,

an implicant family F for some event is minimal when m[F] - F

As an example, some of the minimal implicant families for event 1

of the tree of Figure 1 are [{2},(5),{6}] , [[2},{7,8),{9,10}]

and [{3,4},{5},[6}]

Some additional definitions are useful in dealing with fault

trees iavolving complementing arcs. Again, let x - (xi, ... , x)

be any vector of O's and l's (not necessarily consistent with the

fault tree), and suppose P is a Boolean function mapping each such

x into 0 or 1 . A subset P of U U (-U) is a prime impLicant



14

of j if P implies 0 (i.e., c(x) 1 for all x such that

/[P]/x - 1) and no proper subset of P implies 0 . Also, a family

P of distinct subsetn of U U (-U) is a prime implicant fciily for 4 if

for all x O(x) - /P/x and each P e P is a prime implicant for .

The concepts of prime implicants and prime implicant families have

been widely applied in the fields of switching theory and logic,

and the definitions giver here are standard in most introductory

textbooks devoted to these fields. If Pl and P2 are both prime

implicant families for $ , then P, W P so a prime implicant

family is unique.

Specializing the idea of a prime implicant family to our purposes

here, we will call a family P of subsets of U U (-U) a prime

implicant f(=iZy for event i if P is an implicant family for event

i and each P e P is a prime implicant of the Boolean function /P/

Note that if F is an implicant family for event i , the situation

/[F]/x - I for some F e F requires that x- 1 only if x is

consistent with the fault tree; however, whether F is a prime implicant

of IF! depends on all x , not just vectors consistent with the

fault tree. Thus with this definition, two prime implicant families

P) and P for event i need not be the same, since /IP /X - /P 2 /x
1 21 2

need only hold for consistent x . But if P1  and P2  are composed

only of sets of basic events, it will be true that P1 - 2 ' In fact,

in sections which follow, we will not be concerned with whether an

implicant family F for event i consists of prime implicants for

L /FI unless F consists only of subsets of basic events or only of

Zarqest simple modulea for event i , which will be introduced in

Section 1.3.
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As an example, the family F - [{9,10},(l2,l4•,{13),{-9,11},{-l0,l1}] I
is an implicant family for event I of the tree of Figure 1, and F is

in terms of basic events; but F is not a prime implicant family for

event 1. On the other hand, P - [{9,10},(12,l4},{13},{l1}] is a

prime implicant family for event 1 and it may be verified that

/P/ = IFI.

The fault tree algorithms MOCUS and MICSUP discussed in the follow-

ing subsection obtain, for selected gate events of the tree, minimal

implicant families in terme of basic events, that is, families of

subsets of B U (-B) ,'family F obtained by one of these methods

will not in general t a prime implicant family unless F consists

only of subsets of B (or only of subsets of --3). TA~en F consists

only of subsets of B , F is usually called a minimal cut 80t famiLy.

The dual family in this case is the family of minimal path sets.

In utilizing a fault tree to obtain information on the reliability

of a system, it is necessary to have on hand estimates of the probability

of failure of components or subsystems associated with the basic events;

the availability of these estimates determines the extent to which sub-

systems are broken down into further subsystems. Once minimal

implicant family in terms of basic events beis been obtained for the

subtree top event, bounds on system reliability can often be found,

as well as a number of measures of the contribution of basic event

components and subsystems to reliable system operation. The use of

cut sets in reliability evaluation is discussed by Barlow and Proschan

[2] and Lambert [101.
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1.2.2 Tho MOCUS and MICSUP Methods

Under the name MOCUS (Method of Obtaining Cut .Sets), Vesely and

Fussell [6] suggested one of the first methods for finding a minimal

implicant family in terms of basic events for the top node event (or

any other gate event) of the tree. MOCUS was originally proposed for

fault trees that do not include complementing arcs, but the method

remains esnentially unchanged if complementing arcs are present. A 1
{-!

computer program which implements MOCUS is the subject of Reference [7].

For the top node event, say event 1, the procedure begins with the I
definition family D(Z,,D and generates a succession of implicant

families for xI by continually replacing implicants involving gate

events with events nearer the bottom of the tree. The essence of the

method is summarized by the following steps:

0. H - D(z1)

I.i

1. If all sets H e H have been considered in this step, go to

4. Otherwise, select an H E H not previously considered.

I 2. If all e c H are basic events, go to 1. Otherwise for

each e e H that is a gate event _ e V(Z , and for

each e c H that is basic event J . [{e}]

3. H ( [H - [H]] U x J e]

4. 1I ÷ m[H]

(The notation "symbol - formula" is well-established and means that

after the operations indicated by the formula on the right have been

performed, the resulting object, whether it be a family, set, or

quantity, is to be represented by the symbol on the left.) It is

readily verified that i will be an implicant family for event 1.

, i i i i i i i i i i i i i i i i i i i i1
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The minimization task of Step 4 essentially consists of comparing each

set H e H with sets which precedes it in H

The algorithm as stated is suitable for computer implementation, but

the main idea is best illustrated by deriving a Boolean sum-of-products

expression in terms of basic event variables for event 1 of the tree of

Figure 1. This expression is derived by repeated substitution for gate

event variables. Since the x are Boolean variables, note that the

identity x xj may be used to simplify a product and that products

.1involving a complementary pair of variables (x ,X ) may be discarded:

+ X 5I
+ x56

+x x3 4

+ x1 2 x1 4

+ x1 3
13 14

+-6 -gll x

+ x 6 X

~ ~~~~1 . .. ,14 , • i i i
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+ X7xXs-gl x "

,+X7 X8 x~lOXIl S
+ X-9X l1

+ x- 9x- 1 0x 1 1

+ x 9x- 1xll
-9 - 10 2 14

+ X xlx

-1 13+x x x x

- 11 12 13
+ x_ x110x 12 xl4

+% x x lc

+x xxlX
911 13 14

+ x_ 10 xllxl 3Xl

+ x x x

-10 11 13 14

The sum of remaining products corresponds to a nonminimal implicant

family for event 1. Minimization of this family is Ž,quivalent to

applying the Boolean absorption identity (xi + xxj xi) to pairs

of products in the above sum, thus eliminating redundant products.

The resulting "minimal" expression is

xI - xgX0 +X x + x + xg x + x_1X

910 12 14 13 -911 10 11
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MICSUP (Mtnimal Cut Sets, UPward) is an alternative method of

constructing basic event implicant families proposed by Chatterjee [3].

At least two computer codes utilizing this method are available [12],

[13]. The technique is based on Che observation that if minimal basic

event families I are available foa all immediate subevents j c Di

of a particular gate event i , then the minimal basic event family

for i is simply

m U c
F-D(YiD) JE1

where I [{J}I if j is a basic event. To find a basic event

family for the top node event of a fault tree, say event 1, the

procedure is as follows:

0. F - f i} .

1. If all events i e F have been considered in this step,

go to 3. Otherwise select i c F not previously considered.

2. F + F U {j e Di .J a gate event}
i

3. Consider successive elements of F in upward order (any

ordering such that each event follows all of its subevents).

For each i c F construct

ýI D(iD i) C J1l

Steps 0, 1, and 2 serve only to avoid, if possible, finding 7 and

I for every gate node u of a fault tree containing complementing-u

arcs; if the tree contains no complementing arcs, we may let F = G

the set of gate nodes, and just perform Step 3. Also, minimization may

Vi
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be postponed until I is constructed if it is expected that the

unminimized families for immediate subevents of I will not constain

a large number of nonminimal sets.

For the example tree of Figure 1, this simple method is illustrated

with Boolean expressions. Evidently, the set F in its proper order

is (8,7,6,-6,5,4,3,2,1}

x8  '13 14

x7 x 12 + x13

x6 -x 9x 1 0

X ~X + X-6 -9 -10

x 5  7 8

S(x 12 + x 1 3 )(x 1 3 + X1 4 )

"" x12X13 + x 1 2 x 1 4 + x 1 3 + x13x14

"X 12 x 34 + x 13

x4 -x_ 6X1 1

= (x_ 9  + x-l0)Xll

X- 9 x 1 1 + X- 1 0 X 1 1

x X + x
3 4 5

- (x_ 9x 1 1 + x 1 0 x1 1 ) + (X1 2 x 1 4 + x13)

" x 9x 11 + x- 10x 11 + X 12 x14 + X 13
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x2  x3 x4

L- (x 9 x1 l + x_ 1 0 1X + xL2 Xl4 + X 3 )(X_ 9X1 1 + x 1 0 X1 1 )

" X~xl + ~g_!oll+, xX Xl2X49 X 9 1 1 + Xi] 19 11 12 14 1.

+X Xgx +x x_1 OX + X- o x
-X9 11 x13 + -9 x-10 x11 + -10 x11

+ X 1 0 X1 1 X1 2X1 4 + X10X llXl3

- + X + X

x 1  x 2 +2x3 +x 6

- (x_ 9x1 1 4 x 1 0 X 1 ) + (x19 x1  + x 9 1 0 x 1 - X1 2 x 4 + 1 13

+ (X9 x1 0 )

SX- x + x- X +x x + x- x

+ Xl2X4 + X3 + XxgO
+ 1 2 1 4  1~3  9 10

"X xXl + X- 0Xl + X12x4 + x3 + Xg0 •

The MICSUP algorithm is superior to MOCUS in two cases:

(1) when basic event families are desired for a number of intermediate

gate events as well as the top event, and (2) when only sets not

exceeding some given number of basic events are required in the top

event family. The second case is most important in practice. Often

the minimal top event family has many sets which contain a large number

of basic events. If the fault tree is free of complementing arcs,

each of these sets is associated with a mode of system failure due to

failure of a large number of basic node components and subsystems;

that the actual system will fail in this manner is highly unlikely.

Thus implicants which exceed some given size are usually not of interest

in the subsequent reliability analysis of the system. The convenience
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of the MICSUP method in this case is a consequence of the fact that

sets generated for every gate event consist only of basic events, and

any set that exceeds a given size may be immediately discarded.

This way of finding a subfamily 7i of the complete minimal

family 71 for event i does not, in general, yield meaningful results

for fault trees involving complementing arcs, due to the fact that

is usually not a prime implicant family. However, as an illustration,

suppose that only products of size 1 are required in the previous

example. The expression following each colon (:) below results from

discarding products containing more than a single variable.

x 8  x1 3 + x 1 4

x 7 X 12 + X13

x 6 x9x 10:0
6 91 0

_6  +x_9 +x x +O

"(x1 2 + x1 3 )(x 1 3 + x1 4 ) : 3

X4  x 6_6 X1 1

" (x 9 + x1l)xl 1 : 0

x3 -x 4 + x5

- (0) + (x 1 ) :x

x2 X 3x4

- (x13)(0) :0

xl= x2 * x5 +x 6

=(0) + (X )+ (0) XS(x 3) 13
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(A null expression for xi means that there is no basic event variable

which by itself implies xi .) In addition to x , x also implies

xI , so the method has failed in this case to find all single variables

that imply x. What is really desired here is the subfamily of

all prime implicants for event 1 which consist of only one basic event.

1.2.3 General Framework for Implicant Elimination

Implicant size is one criterion which may be used to determine a

subfamily of "interesting" implicants when the complete minimal implicant

family is too large to obtain. More generally, given any set of events

E , an importance criterion for E assigns certain subsets of E to

a class, called important sets, in such a manner that if I is

important, all subsets of I (ignoring the null set) are also important.

This definition just guarantees that if V' is a subfamily of all

important sets of the family I -then m[P'] C m[l] . Also, let f

he a reai-valued function whose domain consists of all subsets of E

it is convenient to call f an importance function if for any real

c either [I I I C E , f(I) < c! or [I I I C E , f(I) > ci is a

class of importait sets.

Suppose that a positive real value i(k) is chosen for each

event k E. If f(1) i(k) for each I C E ,then f is
kF I

an importance function; if i(k) - I for all k c E , then all sets

not exceeding a critical size c are important. Many other importance

functions can be constructed using the i(') values, such as min t(k)
kFl

or, when all values are between 0 and 1 , l(k)

kEI
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For fault trees that do not contain complementing arcs, the

MICSUP algorithm obviously lends itself well to construction of

minimal subfamilies of all implicants that satisfy an importance

criterion, For E - B , as in the case of elimination by size,

implicants that are not important may be discarded whenever they

appear.

1.3 Simple Modules

Deleting nonminimal implicants of a family is unquestionably

the most time zonsuming task in MOCUS and MICSUP methods. Given an

arbitrary implicant family K in any order, m[K] is obtained

essentially by comparing each set K with all sets that precede it

in K . If J is a preceding set, K is eliminated if J C K and

J is eliminated if J D K . Some effort can be saved by ordering the

sets of K according to increasing size; then K is not strictly

contained in any preceding set. In any case, the number of set com-

parisons required to find m[K] , if K consists of n sets, seems to

2
be bounded above by some constant times n

In practice, MOCUS and MICSUP algorithms often perform a great

deal of minimization that could be avoided by isolating certain branches

of the fault tree that have no basic nodes in common. Such is the

general idea underlying this section.

I -i. ..i • 1 • •.....1 --•/.. .. .i • ...i • i. .. ...i ...f.... ----....i.. ... .... ....i.....i...... .
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1.3.1 Simple Module and Modular Subtree Definitions

We begin with some additional definitions regarding fault

trees. If node w is a subnode of u , a chain from w to u

is the set of nodes along an upward path from w to u . For

instance, in the tree of Figure 1, the sets (12,7,5,3,2,1) and

{12,7,5,1} are chains from node 12 to node 1. The number of nodes

in the largest chain from w to u is denoted by cu(w) , and

c (') is an integer valued function having u and the subnodes of

u as its domain (c (u) - 1 for any node u). In the example tree,

cl(1) - 1 , c(2) - 2 , cl(3) - 3 , c (4) - 4 , ci(5) - 4 , ci( 6 ) - 5 ,

etc.

Next, if v is a subnode of u , v is said to be a simpZe

module for u if every chain from a basic subnode of v to u

includes v . Node 5 is a simple module for node 1 in the example

tree, since the basic subnodes of 5 are 12, 13, and 14, and the

chains from these nodes to node 1 are [12,7,5,3,2,1] , [12,7,5,1]

[13,7,5,3,2,11 , [13,7,5,1] , [13,8,5,3,2,1] , [13,8,5,1]
[14,8,5,3,2,11 , and [14,8,5,11 , all of which include 5. It is

helpful to think of the Boolean variables associated with a simple

module as indicating the status of an independent subsystem; that

is, given the status of the subsystem, the status of any component

in the subsyscem is irrelevant to the.pzoblem of determining

whether the system itself is working. For instance, the values

of x 1 2 , x13 , and x1 4 are not important in determining the

value of x if the value of x5  is known. Note that with this

definition, node 4 is a simple module of node 3, but not of node 1,

S It• k I-
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so the node or set of nodes must be specified for which a particular

node is a simple module. Also, for any gate node u , all basic

subnodes are trivially simple modules for u .

If node v is a simple module for node u and v is not

a subnpde of some other simple module for u , then v is a largeat

simple module for u . In Figure 1, the largest simple modules for

node I are 5, 6, and 11, whereas those for node 3 are 4 and 5.

It is easy to see that the largest simple modules for a node have

no subnodes in common, a fact which motivates these definitions.

The modular eubtree for a gate node u consists of all nodes,

along with the arcs joining these nodes, that appear in chains

from the largest simple modules for u to u itself. Node u

is thus the top node of its modular subtree. Figure 2 illustrates

the modular subtrees for nodes 3, 4, 5, and 6 of the example

tree. This definition of a modular subtree is related to the idea

of an independent branch of the fault tree, introduced by

Chatterjee [4].

,"1
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1.3.2 Application of Simple Modules to Implicant Families

The above concepts may be readily associated with implicant

families. For convenience, call event j a simple module for event

i if node jl is a simpl.e module for node il in the fault tree,

and the modular subtree for event i is the one having node lil

at the top. Were the MOCUS or MICSUP method applied to the modular

subtree for event I , with largest simple modules for i treated

as basic events, the result would be a minimal implicant family Mi

in terms of these largest simple modules. More suitable algorithms

to find implicant families associated with modular subtrees are

discussed in Section 1.4, but for purposes here, nothing is lost by

assuming that procedures similar to MOCUS or MICSUP are available

to find families M

For a given set Q of gate events, a modular truzcture for Q

is a collection (M I of minimal implicant families in terms
J JE:M(Q)

of largest simple modules for their respective index events, where

the index set M(Q) is the smallest set satisfying (1) Q C M(Q)

Sand (2) if J is a gate event In an implicant of some family Mi

for i E M(Q) , then J e M(Q) . The modular structure for Q is

just the smallest group of implicant families in terms of largest

simple modules necessary to find a basic event implicant family for

each event in Q . For the tree of Figure 1, M({l}) - {1,5,6,-6)

and
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• •~ M 1 - [ { 5 } , t 6 }, { - 6 , 1 1} ],

M5 - [[13},{12,141]

M6 - [{9,10}]

_6 - [{-9},{- I0}]

M-6

However, M([1,3}) - (1,3,4,5,6,-6) , so the modular structure for

(1,31 includes, in addition to the above families,

M3 - [(31,{41}1

M4- [{-6,ll}I

Reliability evaluations for a fault tree are usually introduced

by associating independent 0-1 random variables Xu (= 1 - X_u)

with all basic nodes u . For a gate event i , with a minimal

basic evn mplicant family 1ith ano variable X is taken

to be 1 if at least one set I e I has X - 1 for all j c I

,otherwise, X is 0 . Under the assumption of probabilistic

independence of basic node variables, variables for nodes that are

largest simple modules of any particular gate event are also in-

dependent, since they have no common basic subnodes. Hence reliability

evaluations for events j c M(fi}) may be done by considering these

events in upward order, and treating each family M as if it con-

sisted of basic events. The number of minimal basic event implicants

for i usually far exceeds the total number of implicants in all

modular structure families (M } •M {i }j J .(i )

- - -
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Should basic event families be preferred for events in Q

they are easily obtained by selecting the events j e M(Q) in

upward order and constructing in the usual manner:

ij 4- U X I m
MEM m M

where, of course, IM [{m}] for m a basic event. Because them

largest simple module events j have no subevents in common,

minimization is unnecessary. In terrs of Boolean expressions, the

modular structure for event 1 of the example tree yields,

x_ 6 x- _9 + X -10

x6 x xgl
x6  c9 +x1 0

x X +x910
x5 -x 1 3 + x1 2 1 4

xl -x 5 +x 6 +x_ 6x1 1

( 13 + x1 2 x1 4 ) + (x 9xlc) + (x_9 + x-lO)Xll

K 1 3 + x1 2 x 1 4 + x91X0 + X-9X 1 + x_ 10X •

Size restriction may be employed when a MICSUP-type method is

applied to modular subtrees for events in M(Q) . These subtrees

should be devoid of complementing arcs. The family Mý in the

resulting collection (M}J will consist of all implicants

of M j that do not exceed the size limitation, and further elimina-

tion is done as basic event families I' are produced.
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Of course, elimination based on an importance criterion for B

is also feasible when basic event families are constructed. For

j E M(Q) , a subfamily is then constructed which consiets of all

important sets of the complete family I However, it is useful

to have an importance criterion for the set of all events that

appear in at least one implicant of M. (Denote this set by E(Mj) .)

Elimination can then be done when the MICSUP method is applied to the

modular subtree for j . An importance criterion for E(M ) is

easily obtained from a criterion for B by declaring a set M C E(M.)

important iff the basic event family X I contains at least one
nxMmmEM

important set. This is valid because the event sets E(Im) , m E M

are disjoint.

Such an importance criterion for E(Mj) is actually quite easy

to implement when real nonnegative values i(k) are available for all

basic events and an importance function f is given in terms of these

values. Suppose, for instance, that 0 < i(k) < 1 for k e B

and for I a set of basic events, let f(1) - n i(k) . For
keI

j E M(Q) we construct the subfamilies M' in upward order, that

is, Mj is, constructed following all families M foK k a subevent

of j When the family M is constructed, for each gate event

m E E(M ) which is a largest simple module for j , a value t(m)

will be available from a previous computation unless M' - 0m

If the MICSUP method is applied to the modular subtree to find M'

then all sets generated will be in terms of largest simple modules

for J , and only important sets need be retained, where in this case

a set M is important iff M' 0 0 for each m c M and (2) (if
m

condition (1) hold&)
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W t(m) > c
mcM

for a fixed critical value c . When the family M' has been

found, if Mj 0 , i(J) is determined by the computation

max ( I (M)
M•M' mcM /

For MI 0 i(, J(J) is left undefined. It is quite easy to show that

a set M C E(Mj) satisfies (1) and (2) iff there is a basis event

set I e X 7 satisfying
mEM m

RI (k) > c
kcl

This scheme can also be employed to yield a more efficient

technique for size elimination than simply restricting implicants in

modular structure families to a fixed maximum" size. Let a(k) E 1

for each basic event k and let f be the importance function

defined for a set I of basic events as f(I) o o(k) . As in
ksl

the procedure above, when M' is constructed, relevant values a(m)

for largest simple module gate events m c E(M ) will be available

from earlier computations. A set M C E(Mj) is now considered

important iff (1) M' # 0 for each m E M and (2) (if condition

(1) holds)

a c(m) <c
mnM
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for a fixed integer value c . From the family M' , if M! 0 0

a(j) computed as

in"i

For any set M c M' In this case, there is at least one basic

event set I c X I having no more than c elements. We call
MC,

the parLicular criterion discussed in this paragraph moduZar size

import~ane.

1.3.3 k Method for Identifying Modular Subtrees

For an arbitrary gate node u , let G U L be the set of
u u

nodes in the modular subtree for u , where L consists of allU

nodes that are largest simple modules for u and Lu n0 G- 0 ; GS u u

is never empty, since u c G
u

Finding sets G and L is not difficult computationally.u u

The technique described here makes use of particular sets of

replicated nodes, nodes which have more than a single leaving arc;

for instance 5, 6 and 13 are the replicated nodes'of the Figure 1

tree. For any node v , let Rv consist of all replicated subnodes

of v , as well as v itself if v is replicated. The set of

replicated subnodes of v is just

U R ,

where S is the set of immediate Bubnodes of vv

' i i i i ;; i ; • • .. . .
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The following procedure determines the set L of largest
u

simple modules and the set G for an arbitrary gate node u

LSM

0. z 0 , T * {u) L ÷ 0 , G 4- 0
u u

1. If T 0 0 , stop. Otherwise z ÷ z + 1

T+ {v I v c T , Cu(v) A z) U (S I v c T c, e (v) - z

GU v Gu U v ) v e T c - z} R

L 4- L UL, T 4- T - L . Go to 1.Su uI

iI} As an illustration, we find the largest simple modules of the top

node of the tree of Figure 1:

LR4 U RL2, , T , - 0
RI3 , R, R R13

R - {61

R 5 -{5,13}

R4 {4,61

S3 , 2 ,R1 (4,5,6,131
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z 0 T G (1} L ÷ 0

z - 1 T 0 0 U {2,5,6}

G 0 U (1i

L 0

z 4 2 T { (5,6} U (3,4}

CL ÷ {1} u (21

L+0

z + 3 T - (4,5,61 U (4,51

G1- {1,21 U (3}

L (51 (since R5 n (R4 U R6 ) -0)

L1 0 U {5}

T - {4,5,6} - (51

z + 4 T {6} U (6,11}

- {f,2,31 U {4}

L { (6,111 (since R - 0)

L= {5} U {6,111

T + {6,111 - 16,11}

Stop.

Essentially, the method proceeds down the subtree with top

node u , and the set T and L involve nodes successively further

from u with increasing z . An examination of Step 2 shows that

if v is a subnode of u , unless v is a subnode of a largest

simple module for u , then v will eventually appear in the table

II
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T formed in Step 2 for some value of z , say z' . If

Z' 0 c (v) - 1 then v is retained in each T for successive

values of z - z',z' + 1, ... , c (v) - 1 . When z - c (v) -1u U

in Step 3, then v is tested to see if it is a largest simple

module for u . If it is, v is included in L and removed from

T ; otherwise, S replaces v in the next T formed in Step 2
V

(for z - c (v)) and v is included in G
u u

The validLLt:y of this procedure is based on the following easily

established facts:

1. Given any two fault tree gate nodes v and w neither

being a subnode of the other, then Rv n R 0 if and

.1 only if v and w have no basic subnodes in common.
2. For any z , T U Lu contains at least one node of everyUL

chain from a basic subnode of u to u itself; moreover,

for each v e T and w L , Rv Rw -0

I; 3. For v E T , z - c (v) - , there is no w e T such that
U

v is a subnode of w

4. For v c T , v a simple module for u , there is no

w e T such that w is a subnode of v

An effective method of constructing the set L in Step 3

deserves mention. Let r - (rI, ... , r ) be a vector having the

same number of components as fault tree nodes. The set T is taken

to be ordered in some arbitrary manner and for v , w E T we write

v -- w if v precedes w in T . Node u is again the subtree

top node.
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1r

0, L -0 . For each w E R , r - 0 in r

1. If all nodes of T have been considered in this step,

stop. Otherwise select the next element v e T in the

order ,

2. If z c u(v) - 1 , go to 3. Otherwise, if rw - 0 for

all w r R v , then L 1 L1 U {v}

3. r 4 v for all w e R . Go to 2.w v

This procedure constructs the set

L Ivi v e T , c (v) - z + 1 , and R flR -0 for all w -v in T}.
U w v

The same procedure may be applied with the modification that the

elements of T be considered in reverse order to obtain

L (v v T , c u(v) - z + I , and R% i Rv 0 for all w -v in T}.

1 2
. Then L L LL

We sometimes require that the largest simple modules be known for

each gate node of the fault tree, so the LSM procedure must be applied

for every u P. G .'However, calculating c u(w) for all subnodes

w of u for each u c C is wasteful, and a more efficient method

can be suggested. This method is motivated by two simple facts:

First, if G and L are available for some gate node u , andu U

we wish to find Gv and L for some v e G ,then it is onlyvv u

necessary to calculate c v() for subnodes of v in G U L ,
s u u

since Gv U Lv C Gu U Lu . Secondly, if v is any gate node which

V v u

i __ _.____.____,____,_
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is a simple module for u then c (w) c (w) - c (v) for any

subnode w of v . In the following statement of the method, it

is assumed that a downward order has been determined for the set

G of all gate nodes.

MODS

0. For all w c G, N G U B.
w

1. If all nodes in G have been considered in this step,

stop. Otherwise, select the next node u e G in downward

order.

2. If L and G have been found, go to i. Otherwise
u U

calculate c (.) for all subnodes of u in N , andu u

M + {u}

a. If L and G have been found for all nodes v e M

go to 1. Otherwise select v c M for which L and

G are not available.
v

b. Find Lv and G using LSM procedure, noting that

either v E u or v is a simple module for u , so

cv (w) - c (w) - Cu (v) for all subnodes w of v

C. M - M U (w I w e L , w a gate node} . For each

w e G - {v} for which G is not available,v w

N - G U Lv . Uo to 2a.

Note that substeps 2a thru 2c are repeated until all simple modules

have been found for node u chosen in Step 1.

The process of determining largest simple modules for each

gate node of the tree of Figure 1 is illustrated:
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N w {1,2,3,4,5,6,7,8,9,10,11,12,13,14} , w C G
w

Calculate cl() for subnodes of node 1 in N1 M ÷ (i}

L1 {5,6,111 G1 {1,2,3,41

M + {11 U {5,61

N f1,2,3,4,5,6,11} , w e (2,3,4}w

L - (12,13,140 , G- (5,7,8}
55

N + (5,7,8,12,13,141 , w E {7,81w

L6 - {9,10} , G- {61

Calculate c 2 (') for subnodes of node 2 in N2 . M ÷ (2} .

L2- {4,51 , GO2 {2,3)

M + (21 U {4,5}

N3 + (2,3,4,51

L 4 - {6,11} , G 4 -{41

] M ÷{2,4,51 U {61

L5 , G5 found previously

L6 , G6 found previously.

Calculate c3 (.) for subnodes of node 3 in N3 . M + {31

53- {4,51 , G3 - (3)

M {31 U {4,5}

L4 G 04 found previously

L5 , G. found previously.

5~
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L 4 , G4 found previously.

L5 , G5  found previously.

L6 , G6  found previously.

Calculate c7 () for subnodes of node 7 in N7  M [ (7)

L 7 { 12 ,13} , G (71"f7

Calculate c 8 (.) for subnodes of node 8 in N8 . H + {81

L8 {13,14) , {8- 8

Stop.

1.4 Obtaining Implicant Families Associated with Modular Subtrees

Subsections 1.4.1, 1.4.2, and 1.4.3 each suggest a technique for

deriving a minimal implicant family Mi associated with the modular

subtree with top event i . If the subtree involves complementing arcs,

then the complete families, say Mi I Mi , and Mi , generated by each

of these three methods may all be different, though it will be true that

for every x , /M - /xi/x U /Mi/x . The families produced by method

MSDOWN of 1.4.1 and method MSUP of 1.4.2 need not be prime implicant

families for i when the subtree has complementing arcs. The Nelson

method of 1.4.3 always generates a prime implicant family or subfamily

of all prime implicants that agree with an importance criterion or size

restriction; however, this method will often be less efficient than MSDOWN

or MSUP when applied to a large subtree.

Subsection 1.4.4 speculates on the relative suitability of these

"algorithms for particular applications.

.u ..! !
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1.4.1 The MSDOWN Method

The spirit of this method (Modular .Subtree Downward) is akin

to that of MOCUS, but MSDOWN is more intricate and more efficient

for most applications. The algorithm makes use of the concept

presented in Section I.1 of the dual of a family of sets of positive

and negative integers. For purposes here, this concept requires some

additional comment, which is introduced by way of an example.

Consider the fault tree of Figure 3. Were the MOCUS algorithm

applied to this tree, the process of constructing the minimal implicant

family T would be represented by (with Z. M 1)

m[ X D(VZeDe)]
ee{2,3,4,5}

where D2 - {6,7,8,9} , D3 - (7,8,-9,10} , D4 - {7,8,11,121 , and

D5 -9,10,13,14) . In a Boolean context, the state vector is

x (x 1 ,X2 , ... , x14 ) , and the expression for / X V(I,D )/x
I' ee{2,3,4,5e

is a product of sums,

(x6 + x7 +x8 + x9 )(x 7 +x8 + x_ 9 +x 1 0 )(x 7 + x 8 +x 1 1 + x1 2)(x 9 +x 1 0 +x 13 + X14)•

So determining the product family and minimizing is essentially

equivalent to expanding the above expression into a sum of products

and eliminating nonminimal products, as well as products having comple-

mentary pairs of variables. Of the 256 products, 228 have no comple-

mentary pairs of variables, but only 16 products are minimal.

Though the tree of Figure 3 is contrived, and such trees do not

often occur in practice, the point is that if an implicant H with
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z 4

F 3

I FIGURE 3
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a moderate number of gate events appears at some time during applica-

tion of the MOCUS procedure, the product family X D(2eD ) may be
ecH

quite large, especially for a tree where a sizable proportion of the

Z are 1 (OR relations). However, the family remaining after
e

minimization may be relatively small if the immediate subevent sets

De involve events associated with replicated nodes. This suggests

that siibstantial effort could be avoided if the family

:1m V(Ze ,De)]
m [eeH eej

could be found without generating all the nonminimal sets in the

product family.

From the definition of the family V(2eDe) , it is clear from

Section I.1 that d[(e,D)] 9 D(#D - t + , where #D
e e e e e e

is the number of elements in De Moreover, d[d[V(k e,De)]]
e e

(e,De) D Thus by Proposition 1.1.3,

d UV(#D e, m [X (eDc)]

The family in brackets on the left requires about the same amount

of effort to construct as the families (X ,D e) together. The

algorithm given in Reference [17] finds the dual of an arbitrary

family F and is well suited to our purposes here. Essentially,

the algorithm generates the sets of d[F] in groups, and minimization

is required only among members of the same group; in fact, when finding

the dual of U V(#DD - k. + 1,D ) the algorithm bypasses minimiza-

eiH e e e

tion altogether if the sets De , e c H are pairwise disjoint.
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In addition, the number of nonminimal sets appearing during con-

struction of this dual will always be less than the number of such

sets in X D(G eSe) usually many times less. Use of the dual
eCH a

algorithm in the manner suggested here to find I for the tree of

Figure 3 requires only 1/10 the compucation time necessary to

produce and minimize the product family. The difference in efficiency

between the two methods becomes increasingly dramatic as the number

of sets in the product family increases. It is not hard to devise

examples where the dual algorithm generates the required minimal

family quite easily, but formation of the product family is computa-

tionally impossible.

If X D(Z ,D ) is small, say fewer than 20 sets, the dual
eH e eeEH

algorithm may require somewhat more computation time than forming

and minimizing the product family, due to the comparatively large

amount of computer code associated with the algorithm. However, in

this case, the computation time required by either method is quite

negligible; so in the MSDOWN method, it is not worth the trouble to

bypass the dual algorithm and derive and minimize the product family

whenever this family has fewer than 20 sets.

The steps below comprise the MSDOWN procedure applied to a

modular subtree with top event i . The procedure requires that the

set L of largest simple modules for u - Il be available, as
U

well as the set G of subtree nodes which are not in Lu u

ij4
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MSDOWN

0. z 0 , -o , ua- Iii , H [til1

1. z + z + 1 , CZ {v I v C G , c (v) - z)
u u

Rz -4-fv gc¢.GO U L , cu(V) inz +J. , v replicated}.i

If C2 - 0 M - H and stop.

2. If all H E H that intersect Cz U (-Cz) have been

considered previously in this step, go to 5.

Otherwise, select H c H with H n (Cz U (-CZ)) 0 0

that has not been considered.

3. a. For each e c H if e e Cz U (-C2 )

J * V(#D - 2e + l,De) , and if e Cz U (-Cz)
aj e e e

4- [(el]e

b. a +•+ 1.

c. H +d U Je]

d. H - [H- [H]] U Hk , go to 2.

4. R + [H H H , H n (Rz U (-RZ)) # 0]

(R will thus contain all H having a replicated

subevent e with c (Jel) - z + 1 .)u

5. Partition sets of R into disjoint families {R a 1,I

where R - R r) H and A consists of all c such

that R 0.

6. H (H - R] U A m u R] go to l.

Following each execution of Step 1, events e c H for any

implicant H E H all satisfy c (I el) > z . Steps 3a thru 3d

select each implicant H E H having at least one event e satisfying

c (l el) z and replace this implicant with a family Hn
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For e c H if we let J u(#D e + 1,D for c(lei) z' " D(#e - e + 'e) fo c(

and J - [[e)] otherwise, thene

Ha "m [eX Je]e

by our earlier remarks. Thus when Step 4 is begun, events e F H

for any H c H have c (lei) > z . At this point, the population

of events e with cu(Iel) - z + 1 is greater than in all families

H previously constructed, since no substitution for these events

has yet occurred. The events which correspond to replicated nodes

of the subtree and satisfy cu(lei) - z + 1 are likely to be found

in nonminimal sets of' H . So we aasign sets containing such replicated

events to the family R ,and minimize only this portion of H.

Moreover, for any family H constructed in Step 3, the intersection

of H and R is minimal (though it may he empty), because H is
OL a

minimal. Each family of the partition in Step 5 is thus minimal, so

the indicated minimization only requires comparison of each set of a

family R with all sets in preceding families.

It is intuitive but not obvious that the minimization scheme in

this algorithm insures Mi will be minimal. This is the case, but

to establish this face rigorously is tedious and not particularly

instructive, so we do not consider the proof.

Figure 4 shows the modular subtree for the top node of the

Figure 1 tree. The following example derives the minimal implicant

family M1  for this subtree using Boolean variables. The integer

in parentheses following a term is the value a associating the

corresponding implicant with the family H The families R of

Step 4 and those of the partitions of Step 5 are also indicated.
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z+÷1 C {I1÷{} R

+ x2(1))

+ X6(J) -

+ x6()
R-

SC 2  {2} R2 ÷

x2

+ x
5

+ x6 (1)

+ x3 x 4 (2)*-(/d[({31,{41}]/2_)

R? 0

z .3 3 ({3} R3 (4,5} 1'

x 5(l)

+ x6(1)

+
3 

4

+ x4 (3)- -(/d[[{41,(4,5}11/x) __j

R - [{4},{5}] , R1 [{5}] , R ([{4}]

z +4 C4 {4} R4 
- (6}

x5 (1)

S~+ x61

+ x 6X1 1 (4)-4--(/d[-6},tll}]/_)

R [{6},{-6,11}] , R [f6}] R4 - [{-6,14]

z 4- 5 C - 0 Stop.

The expression associated with /MI/x- is thus x5 + x 6 + x- 6X '1 '
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1.4.2 The MSUP Method

The MSUP algorithm resembles MICSUP confined to a modular subtree.

MSUP is particularly suited to applications where only a subfamily of

important implicants or those not exceeding a fixed size is required

for the subtree with top event i , rather than a complete family Mi ' A

1
As with MSDOWN, the MSUP method utilizes the set L of largest

simple modules for the subtree top node u - Il , as well as the

set G of subtree nodes not in L . In addition, MSUP requires
U U

that sets L be available for all v e G ; thus, prior to deriving
v u

the modular structure families {MJ jcM(Q) using MSUP, it is con-

venient to apply the MODS algorithm of Subsection 1.3.3 to determine

the largest simple modules of every fault tree gate event. Finally,

MSUP calls on a "downward" type subalgorithm designated as ORDOWN

(substitution for OR-relations, DOWNward). Since ORDOWN has much in

common with the MSDOWN method of the previous subsection, we first

discuss this subalgorithm.

ORDOWN, like MSDOWN, obtains an implicant family N. for jJ

a top event of a modular subtree. However, the events in implicants

of the family N need not correspond to largest simple modules for

the subtree top node v JI . The method is outlined as follows:

ORDOWN

0. a + 0 , v - 1JI , H + [(j}]

1. C (v} u {w I w C Gv , w l}

2. If all H c H that intersect C U (-C) have been considered

previously in this step, go to 4. Otherwise select H E H

with H r) (C U (-C) # 0 that has not been considered.

"--• i•- } •i i -• ' • - n - i
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3. a. For each e e H , if e e C U (-C)

J D(#D - ke + lD) , and if e L C U (-C)

J 4- [fe)]e

b. a. +•÷l.

c. H d e H

d. H ÷ [H - [H]] U H and go to 2.

4. Partition sets of H into disjoint families H - H n H and

let A consist of all a such that H a 0

5. N. m UaA HmI and stop.

Note that each H is minimal, since H arises from a single
a a

application of the dual algorithm; thus, the minimization in Step 5

involves comparing sets in H only with sets in preceding families

of the union.

The form of this method is somewhere between MOCUS and MSDOWN,

but its important feature is the set C of Step 1 which controls

event, substitution in implicants of H . Substitution for the top

event 1 is always done, but a subsequent event e appearing in sets

of H that is not a largest simple module for j may only be

replaced by D( eDe) if Ze - 1 , that is, if x is represented

by an OR relation between immediate subevent variables. One effect

of this restriction is that no set of the family N1  will contain

more events than a set in the top event definition family, V(j,%D)

though N1  will usually contain more sets than the definition family.

A second effect is that events in implicants of N. are more likely
t

to correspond to largest simple modules for 4than events in Dj

/.1

• -,... ....... .. . ... ..... ..i ...... i ........ .. .. .... ..i ...... ..... i .............. .... ..i ... ........ i........ i........ ... .. . ...... ... .... ...... ... .... .. . ... ............ ..... ... ..
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though it may happen, of course, that N and D(ZJ,D ) are the

same. The motivation for producing families Nj for selected gate

events j of the modular subtree will be discussed in connection

with the MSUP method.

For a large modular subtree with top event J , sets of N

will usually involve only events for nodes near the top of the subtree,
.i

and in such a case, it is to be expected that N will contain

many fewer sets that the family M produced by the MSDOWN method.

For this reason, the more elaborate minimization scheme of MSDOWN

has not been included in ORDOWN. However, MSDOWN can be modified

to produce the family Nj instead of M by changing the formation
Zj

of the set C in Step 1 of that algorithm.

For event 1 of the Figure 1 tree, ORDOWN proceeds in this

fashion:

C {1,3}

X 1

+ x

H HI - [{2},[5},(6}1

Stop.
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The expression associated with IN /x is x2 + x5 + x Hence,

for this example N1 - D(ClpDI) But for event 5, ORDOW14 gives

/N5/x as x 12x14 + x

To find the minimal family Mi in terms of largest simple

module for event i , the steps of the MSUP algorithm are as follows:

MSUP

0. F i i•

1. If all events j e F have been considered previously

in this step, go to 4. Otherwise select j e F not yet

considered.

2. Determine the family N by applying algorithm ORDOWN

to the modular subtree with top event j

3. F + F U {e I e E E(N ) , e not a largest simple module for i.

Go to i..

4. Consider events j e F in upward order (so any event of

F follows its subevents), constructing families K in

this manner: If all events in E(Nj) are largest

simple modules for j

K 4- U x K
NeN1 neN

where K ({n}] if n e L . If not all events inn U

E(Nj) are largest simple modules for j

K1 -4- m [U x~ K]
NeNj nE:N

5. M i Ki and stop.

~ ~ ~ - . ,i ii ii i
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E(Nj) appearing in Steps 3 and 4 is the set of all events appearing

in at least one implicant of N Also, though the facility for

implicant elimination based on an importance criterion or size

limitation has not been included in this outline of MSUP, elimina-

tion may be carried out in Step 4 just as indicated in Subsections

1.2.2 and 1.3.2 with regard to the MICSUP method.

The families K generated in Step 4 are all in terms of

largest simple modules for event i In fact, if in Step 2 the

ORDOWN procedure is ignored and N D(ZJDj) , then the resulting

method is the MICSUP procedure applied to the modular subtree for

event i , with the exception that information concerning simple

modules guides minimization in Step 4. The incentive for obtaining

N from the ORDOWN algorithm is threefold: First, sets of N are

more likely to contain only simple modules for j than sets of

D(kjD) , so there is less likelihood that minimization will be

required when Kj is constructed. Secondly, since we are ultimately

interested in the implicant family Ki (- Mi) , construction of

implicant families for other events in the subtree for event i should

be avoided I.f possible. Use of ORDOWN usually leads to a smaller set

of events F at the beginning of Step 4 than if N were set to

D( D ,since an OR gate event e E , not a simple module for

some other event in F , would not appear in F . Finally, the sets

of N are no larger than those of V(jDj) so implicant elimination

based on size or importance in Step 4 is no more difficult than in

MICSUP.
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For event 1 of the tree of Figure 1, repeating Steps 1, 2, and 3

of MSUP yields families N, N2 and N4  represented by the Boolean

expressions:

X1  x2 + X 5 + x 6

x 2 X4
x2 -x x

x4 - 6X 11

The set F (in proper order) is (4,2,1Y Since 4 is a simple

module for 2, minimization is only done when M is found:

x4 - X_ 6 x 11

x 2 ' X4

W X- 6 x11

X I x- 6X1 1 + X 5 X6
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1.4.3 The Nelson Method

Associated with any given fault tree is a dual tree, which

differs from the original, or primal tree, only in the value of

gate node logic indicators. If Z is the logic indicator for node

u of the primal tree, then #D - Z + 1 is the corresponding logicu u

indicator for the same node of the dual tree. Of course, for trees

having only AND and OR logic, the dual tree is easily obtained from

the primal by changing each AND gate to an OR gate and vice-versa.

Since the defining families V(ZuD ) and (#Du - z + ],D 'u u u

for gate event u of the primal and dual trees, are dual families,

Proposition I.1.1 of Section I.1 indicates that for all x

/D(#D - Z + 1,D )/(1l-x) - l-/V(Zu D )/x

U u U u -

This holds for all u £ G , so for any vector x consistent with

the primal tree, in the sense of Section 1.2, the vector 1 x

is consistent with the dual tree; that is, for all u e G ,

ID 0D- z + l,Du)/(l-x) l-xu
U U u

Were the MSDOWN (or MSUP) method applied to the modular subtree for

event i in each of these trees to obtain a family Md for the dual tree
i

and a family Mi for the primal, then for all x consistent with

the primal tree it would be the case that

/M /(d-X) 1-/Mi•xi i
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So again by Proposition I.1.1, the dual. family, dEM] , associated

with Md would satisfy, for all x consistent with the primal tree,

£d

/ IMpraXtreeX

Thus we see another way to construct a minimal iirplicant family Mi

from the modular subtree for event i Apply the MSDOWN (or MSUP)

algorithm to obtain a complete minimal family for the dua

modular subtree for event i , and then construct the dual family,

d ,associated with MI

This procedure may not always be successful in practice. The

first problem involves obtaining M ; this may not be possible if

d
the muodular subtree for i is large, since M muse be a complete

minimal family, and a subfamily of important or size restricted sets

is not adequate. Secondly, even when Md can be generated, con-
i

struction of d[] may be difficult. There is a well-known argument

that a "good" algorithm for finding the dual family for an arbitrary

family will probabily never be devised [1], [15]; a "good" algorithm

would be such that the effort required could be bounded in all cases

by a fixed polynomial in the number of sets in the dual family or

the number of elements composing these sets. This, however, is not

intended to suggest that all algorithms for constructing dual families

are equally "bad."

The dual algorithm given in [17] and previously recommended for

use in MSDOWN and ORDOWN methods has worked well for obtaining dEM1

in a number of applications, some involving quite large modular subtrees.

This algorithm also permits set elimination based on importance and

__ --- & -- I
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size criteria to be utilized to considerable advantage in constructing

d
asubfamily of all important sets of d or thoue not exceeding

a fixed size. In fact, if the complete family Md is available,

adequate size and importance restrictions can almost always be chosen

Sthat some subfamily of dMd will be found with a moderate
KI I

amount of computational effort.

In some instances where this method has been applied to large

dsubtrees, the process of obtaining M and then implicants of
±

d[7Vd] not exceeding fixed size has proven to be several times faster

than employing the MSUP algorithm to find the family M' with the

savae size restriction. These example subtrees did not contain

complementing arcs; thus, in each case the subfamilies generated by

the two methods were the same. One subfamily involved 1000 sets,

so the difference in effort required by the two methods can be

significant. However, it is well to note that families Md for the

dual subtrees all had less than 50 sets, though some of these sets

consisted of more than 25 events.

When the modular subtree for an event i contains complementing

Sdd
arcs, d[IA., ] will usually not be the same family as that produced

by the MSDOWN or MSUP method. For instance, Ml - [(5,6,11}] for

event 1 of the example tree of Figure 1, so d[Md] [5},{6j,(llj]

which differs from M1 - ({5},{6},1-6,11}] obtained by MSDOWN and

MSUP. The family djMjJ is a prime implicant family for the Boolean

function /({5},{61,(-6,J1l}1/ so d 1~ is a prime implicant family

for event I in the sense of Subsection 1.2.1. The method suggested

here may be recognized as an adaptation of "Nelson's Algorithm" [1l]



for finding a prime implicant family for the Boolean function IF/

given an arbitrary family F of subsets of U U (-U) (where U

as usual, is some set of consecutive positive integers, say

(i, ... , q}). It turns out that P - d[d[F]] is the required family.

One way to{-prove this is to show that d[F] is a prime implicant

family for the function /d[F]/ , which can be done by demonstrating

that if there is a proper subset of some P c d[F] such that this

subset implies /d[FI/ , then there is an x - (x, ... ,x q) such

that both /d[F]ll - x - 1 and /F/x - 1 , contradicting

Proposition 1.1.1. Our version of this technique is to find
d

d[d[Mi by replacing d[Mi] with the minimal family Md obtained

through application of MSDOWN or MSUP to the dual modular subtree

dfor i . Though in general Mi , d[Mi] , it is true that

d[]- d[d[MiII

Letting P. represent the prime impli~ant for event J in

terms of largest simple modules for j , the collection (PJ}j I (Q)

may uow be derived by utilizing the Nelson method when the modular

subtree for j involves complementing arcs, and any one of the

methods MSDOWN, MSUP, or Nelson when complementing arcs are absent.

Suppose families in terms of basic events are generated in the manner

of Su-section 1.3.2; that is, events j E M(Q) are considered in

upward order and each basic event family I is generated by

I;U xpepj Pell P
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Intuitively, it would seem that these basic event families should

also be prime implicant families, and this is in fact the case.

Also, since the dual algorithm is capable of constructing a sub-

family P~ consisting of all sets of d [Md] satisfying a size

or importance restriction, the remarks of Subsection 1.3.2 extend

"in an obvious way to fault trees with complementing arcs. Thus a

collection {P'} ot subfamilies may be obtained such that P'
1jEjM(Q)j

is a basic event subfamily of all important prime implicants or those

not exceeding some fixed size.

To conclude this subsection, we note that the efficiency of

finding a prime implicant family in the manner suggested by d[d[F]]
greatly depends on the particular technique utilized to construct

dual families. Sometimes the name "Nelson's Algorithm" is applied to

a detailed procedure, also called the method of double compLementa,

which is not noted for being very efficient. This procedure begins

with a Boolean expression in sum-of-products form, for example,

x x+ Xx +x X1 +X2 x 3x 4  3 4

The expression is complemented and, using DeMorgan's Law, converted

to a product of sums:

(x1 + x2 )(x 2 + ý3 + x4)(X3 + x4 )

Next, a sum of products is obtained by expanding and eliminating products

which are not minimal or contain complementary pairs of variables:

X 1 ix 2x4 + x x3 +xX
13 2x3

,U,
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This last expression is again complemented, repeating the above

steps to yield

X 1X 2 + xIx 3 + 2x.I + 4X3

In our notation, P - [[l,2},{l,3},{-2,3},{3,-4}1 is then a prime

implicant family for the function /F/ , where F - [{l,2},{-2,3,4},

(3,-4}]

The effort required by the double complement method increases

very rapidly as the size of F increases. Hulme and Wurrell (8]

considered the following sum of twenty products:

X1 X6 X7X9  2 7x2x x8 + 1 3 4 6 + 6 7a

+ X1 X 4X5 x 7 + x 3 x 4 x 7X8 + x 3X 6X8 X9 + x1x2 3x9

+ x1X 3X6x9 + x x2x4x + x XX3X7X9 + x1x3X6x8

+ x x x x + Xx x x + x X4XsX + x x x6
3 4 79 7 8 9 2 4 57 2 36 7

+ x x xx-x ; +-+ l + xx + xx
2 3 79 1l-1 8 9  2 X 3 6X 9  3 378 9

, They terminated the double complement method after more than 6000

"seconds of CPU time on a CDC 6600 computer without obtaining the

prime implicants associated with this expression. Uqing a general

factorization scheme, they were able to find the 87 prime implicants

in about 400 CPU seconds.

This sum-of-products expression can be represented as a fault

tree in the manner indicated by the introductory example of Subsection

1.4.1 (Figure 3): Subscripts of expression variables are associated

with basic nodes, a separate gate node with AND logic is created for .1
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each product, ind the top node is an OR relation between these gate j
nodes. The MSDOWN method then essentially finds Md by applyingtop

the dual algorithm to a family F of twenty sets, where each set

is composed of variable indices in one of the above products, so

d[M,] is found by two major applications of the dual, algorithm.

The FTAP program, implemented on a CDC 6400 computer (which is

roughly comparable in speed to the CDC 6600), required less than

6 CPU seconds to find the 87 prime implicants.

1.4.4 Comments on the Choice of Method

The question naturally arises as to which of the three methods

of this section is "best" for a particular modular subtree. When

the subtree Is small, say fewer than 2u gate nodes, these methods

will not Fften differ widely in computational efficiency, and any

of the algorithms is appropriate, unless the subtree has complementing

arcs, in which case the Nelson method is usually preferable because

it produced a prime implicant family. On the other hand, when the

subtree is large, say more than 50 gate nodes, it is usually difficult

to predict the relative efficiency of these methods. The analyst may

have to rely-on trial and error or previous computational experience

with similat subtrees, combined with a few general considerations

discussed hi're.

Let us, first assume that the modular subtree contains no comple-

menting arcs. MSDOWN or MSUP will most likely be selected in this

case. MSD9)W1N is intended for use when the comp.Lete minimal implicant

family i is required, and is apt to be more suitable for this

purpose than the MSUP method, especially when a moderate or large

t1

L-, -, ~ ~ . --. ~ - - -
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number of replicated nodes are somewhat evenly distributed throughout

the subtree. The general "downward" method, as well as the dual

algorithm incorporated with MSDOWN, then offers some protection

aga.Lnst the sudden appearance during processing of an unmanageable

number of nonminimal sets. However, if the subtree contains a small

number of replicated nodes, MSUP may be the faster of the two methods

for finding the complete family, but the difference in efficiency

will probably not be dramatic. MSUP, of course, is primarily intended
for use in deriving a subfamily of Mi consisting of important or size

restricted sets.

The Nelson method may seem superfluous for a subtree without

d
complementing arcs, but when the complete minimal family Mi for the

dual modular subtree has significantly fewer sets than the primal

family Mi , this method is apt to surpass MSDOWN or MSUP. Of course,

for the Nelson method to be successful, it is first essential that
' d

MSDOWN (or MSUP) be capable of finding M. One clue that suggests

qd might be small is a predominance of subtree gate nodes with OR I

logi:. A more formal approach is to calculate rough upper bounds

d6 1.and 6 called subtree binary indicated imp Zi cant counts, on the

number of sets in Mi and Md ; a simple procedure for computing ai
i

and 8d is given below. For subtrees without complementing arcs,
i

Sand d are the same as counts of binary indicated cut sets and

bNnary indicated path sets defined by Chatterjee [3], as long as the

modular subtree is treated as an independent fault tree in the latter

definitions, with largest simple modules for the subtree top event

representing basic nodes. As a first approximation, it is usually

-dd
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ci d

reasonable to suppose that d3 exceeds the number of sets in Mi

by one or maybe two orders of magnitude. When the complete family

M caiL be generated, it: may be feasible to find all of the implicants
i

of d [Md] or perhaps only those satisfying an importance or size

constraint. The Nelson method, with size or importance elimination

d
enabled when applying the dual algorithm to Mi , can be coIAsiderably

faster than the MSUP method for obtaining the desired subfamily.

Quantities u and a3 are defined for a modular subtree with

top node u ; for i - +ij or i - -u ,For generality,

we allow the subtree to contain complementing arcs. Suppose che MOCUS

and MICSUP methods, as discussed in Subsection 1.2.2, were modified

to inhibit minimization. If then applied to the modular subtree,

with largest simple modules for u treated like basic events, both

methods would produce the same nonminimal family B or B inu -- U

terms of largest simple modules for u . Families B and B are
u -u

called subtree binary indicated implicant families. Fortunately,

the number of sets in these families is easy to compute without

deriving the families themselves; 1 and B are these counts.
u -U

When the modular subtree involves no complementing arcs, M

and M are unique prime implicant families, with M C B and-U u - U

M-u C SBu , so 1u and 3u are upper bounds for the number of sets

in M and M . Moreover, in the absence of complementing arcs,
u -u

che families M and Md associated with the dual subtree are

ldalso unique, and for i - +u or i - -u , M can be obtained from

Mi by replacing each event j in an implicant of M_. by its

complementary event -j Thus B1 is also an upper bound on the
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size of Md . On the other hand, when the modular subtree contains

complementing arcs, the family Mi determined by algorithm MSDOWN

or MSUP is generally not a prime implicant family for i , and it

cannot be argued that M, S B, . However, for all practical purposes,

it will very rarely be the case that the number of sets in M iI
exceeds the number of sets in

Quantities 1 and B are determined by the following rapid
u -U

procedure: For each node v that is a largest simple module for
the subtree top node u 13 ÷ 1 and 1. + 1 . Consider nodes in

V -v

G , the set of subtree nodes that are not largest simple modules,

in upward order. For v e Gu

1v k

KEV(Zv,Dv) kEK

Kr:V(#Dv-k v+l,D_v) kFK

The last values calculated are 6 and 1S~U --u

Finally, a few comments should be directed toward application

of MSDOWN, MSUP, and Nelson methods to subtrees which contaiti comple-

menting arcs. The workload for each algorithm is about the same

as when complementing arcs are absent. However, the complete

implicant family Mi produced by MSDOWN or MSUP is no longer
li

guaranteed to be a prime implicant family for i . For some fault

tree applications, this may be acceptable, or the analyst may wish

to obtain Mi and from it generate a prime implicant family by any

of a large variety of prime implicant algorithms available in the
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literature; for example, see [14]. of course, implicant elimination

based on size or importance should not be used in conjunction with

MSUP to obtain a subfamily of M . A size or importance criterion,

however, can be utilized to good advantage with the Nelson method.

As remarked above, the quantity 8d (= a can usually be assumed
I d

to exceed the number of sets in the family M produced by MSDOWN
S~d

(or MSUP) for the dual subtree. So, as before if d is not too

large, the Nelson method will probably be feasible.

vI
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PART II

USE OF THE FAULT TREE ANALYSIS PROGRAM

FTAP is a general pturpose computer program for fault tree analysis

employing the methodology of Sections 1.3 and 1.4. The bulk of the

program consists of about 3500 FORTRAN statements, segmented into a

driver routine and about 40 subroutines. Assembler code performs

several simple operations that cannot be done in the context of

standard FORTRAN. The FORTRAN portion of FTAP is compatible with

nearly all FORTRAN compilers, but assembler routine packages arc

currently available only for CDC 6600/7600 and IBM 360/370 series

machines. However, versions of these routines can easily be prepared

in any assembler language according to specifications given in

Section 11.6.

Considerable effort has been expended to insure that FTAP will

be easy to use. The input format is direct and unified, and input

data is completely checked for correctness and consistency. Error

messages are detailed, allowing the user to promptly identify problems

involving program input or execution. Also, an ample number of

comment cards are interspersed with the FORTRAN source statements to

describe the code in terms of the algorithms of Part I; notation used

for these comments is intended to resemble the notation scheme of

Sections 1.3 and 1.4. Finally, FTAP has been extensively tested for

reliable operation.

Sections II.1 through 11.4 below describe program input and

output; Section 11.5 discusses the general procedure for implementing

FTAP at a computer installation.
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I1.1 General Input Structure

The smallest logical units of input data are called program

inotructions, each of which is usually confined to a single 80-

column punched card, though some instructions may be continued on

additional cards. Program instructions are classified according to

three major groups: gate node definition, option, and exeoution.

Gate node definition instructions specify a fault tree for

analysis. These are always read first by the program, and if they

are free of errors, a representation of the fault tree is stored in

main memory. Errors in fault tree specification are messaged and

cause processing to terminate.

One or more option instructions may follow fault tree specification,

and information provided by these instructions is checked and stored.

Options allow the user to (1) modify the fault tree, (2) select

arbitrary gate nodes for which implicant families are to be found,

(3) specify the methodology for obtaining implicant families,

(4) enable implicant elimination on the basis of size or importance,

and (5) control program printed and punched output.

The next card to be read after the option group is an execution

instruction, which may be one of the two types we shall designate as

*TREE and *XEQ. The *TREE instruction invokes an FTAP procedure that

produces a structural description of the fault tree, essentially by

listing modular subtrees and binary indicated implicant counts. The

*XEQ instruction begins the operation of obtIaining implicant families.

Option instructions affect the processing initiated by an immediately

following *TREE or *XEQ instruction, and this processing will be

...

Sa . . . . I
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referred to as a run. Multiple runs are permitted; when a run is

completed, the program reinitializes all memory locations except

those associated with the input fault tree, so a group of options

and an execution instruction for a new run may follow the execution

instruction for the previous run. Options for a given run in no

way affect other runs. The input data package for the FTAP program

therefore has this general form:

fault tree specification

run 1 option instructions

run 1 *TREE or *XEQ instruction

run 2 option instructions

run 2 *TREE or *XEQ instruction

run n option instructions

run n *TREE or *XEQ instruction.

For convenience, the same 80-column card format is used for

all instructions and consists of eight fields across the width of

the card. A particular instruction, however, will typically utilize

only information punched in certain of these fields. Field 1 is

composed of card columns 1-8. Fields 2 through 8 consist, respectively,

of columns 11-18, 21-28, 31-38, 41-48, 51-58, 61-68, and 71-78.

The entry in field 1 is either a gate node name or an instruction

name, left-Justified in the field. FTAP automatically numbers fault

tree nodes with positive integers in the scheme of Part I and allows

the analyst the luxury of choosing names to replace these node numbers

on program input and printed output. Node names may consist of any



69

combination of eight or less characters. Instruction names are fixed

strings of eight or less characters and are discussed in Section 11.4.

Depending on the instruction, the entry in field 2 Is either a

positive integer, a decimal number in a FORTRAN E or F format,

or one of the special characters plus (+) or asterisk (*). An

entry may appear anywhere in field 2, except for an E-format decimal

number, which must be right-justified.

Entries in fields 3 through 8 are again names of fault tree

nodes, left-justified in these fields. The dash (-) may appear in

any of the columns 20, 30, 40, 50, 60, or 70 if the field immediately

to the right of the column contains a node name. Dashes represent

event complementation.

11.2 Fault Tree Specification

The input fault tree is specified through a series of gate

node definition instructions arranged in any order and followed by

a card with the string "ENDTREE" left-justified in field 1.

For a gate node u , the associated definition instruction provides

the value X of the logic indicator and the set D of Immediate
u u

subevents. The first card of the instruction contains the node name

in field 1 and names of immediate subnodes in fields 3 through 8.
At least one subnode must appear, and no two fields may contain

the same name. If node u is joined to an immediate subnode by a

complementing arc, a dash should precede that particular subnode name.

The logic indicator value k is a positive integer that may
u

be placed anywhere in field 2; of course, Z. may not exceed theu

number of immediate subevents. Uptionally, either of the special
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characters plus or asterisk may be used in field 2, with a plus

signifying a value of I for X (an OR relation between subevent

variables), and the asterisk signifying a value for k equal to

the total number of subevents (an AND relation).

When a node has more than six immediate subevents, additional

subevent names may be entered in fields 3 through 8 on one or more

cards which ifollow the first card and continue the gate node definition.

Fields I and 2 on continuation cards are to be left blank. There is

no restriction on the total number of immediate subevents.

As an example of fault tree specification, we consider again the

tree of Figure 1, redrawn in Figure 5 with an unimaginative choice of

node names. The tree is specified as follows (where each line is to

be interpreted as a separate card):

Col. 1 11. 21 31 41

TOP + G2 G5 G6
G2 * G3 G4
G3 - G4 G5
G4 * -G6 Bll
G5 * G7 G8
G6 * B9 BI0
07 + B12 B13
G8 + B13 B14
ENDTREE

More than one fault tree can, in fact, be specified by a group of

gate node definitions. For instance, if the instructions for TOP, G2,

and G3 were deleted from the above list, FTAP would still accept the

remaining instructions, though they represent two distinct trees with

top nodes G4 and G5.

*i'
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TOP

+

G42

IG6G7G

FIGURE 5
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11.3 Execution Instructions

In some applications, the analyst may not wish to include any

option instructions for a run; a *TREE or *XEQ instruction should then

immediately succeed the ENDTREE card or the execution instruction

for the previous run. An execution instruction consists simply of the

name "*XEQ" or "*TREE" left-Justified in field 1. In the absence of

options, FTAP responds to a *XEQ instruction by seeking a minimal

implicant family in terms of basic events for the fault tree top node.

FTAP responds to a *TREE instruction by performing a structural analysis

of the input tree and printing three types of information: (1) a

representation of the tree, which is similar to a listing of gate node

specification instructions; (2) an "inverse" tree, which identifies,

for each gate or basic node u , the set of immediate supernodes of u

and (3) a representation of each modular subtree whose top node is a

simple module for the fault tree top node. Binary indicated implicant

counts are also printed for each modular subtree and its dual.

As an illustration, assume that 'the ENDTREE card of the example

tree specification is followed by the two instructions:

*TREE

*XEQ

Output for the first run begins with the tree representation:

I'

.. . . . . . . -.i-----..
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TREE FOR ANALYSIS

(B) PRECEDES BASIC EVENTS

NODE LOGIC SUBEVENTS

TOP 1 G2 G5 G6
G2 2 G3 G4
G3 1 G4 G5
G4 2 -G6 (B) B1.1
G5 2 G7 08
G8 1 (B) B13 (B) B14
07 1 (B) B12 (B) B13
06 2 (B) B9 (B) 310

Next we obtain the "inverse tree":

INVERSE TREE

NODE IMMEDIATE SUPERNODES

G2 TOP
G3 G2
G4 G3 G2
G5 G3 TOP
G6 G4 Top
G7 G5
G8 05
BlO G6
Bll G4
B12 G7
B13 G7 G8
B14 G8
B9 G6

This is followed by modular subtree information, which completes

the *TREE run:
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MODULAR SUBTREES

(B) PRECEDES BASIC EVENTS

(M) PRECEDES LARGEST SIMPLE GATE MODULES FOR SUBTREE TOP NODE

SUBTREE FOR NODE TOP

TOP I G2 (M) G5 (M) G6
02 2 G3 G4
G3 1 G4 (M) G5
G4 2 (M) -G6 (M) BlI

SUBTREE BINARY INDICATED IMPLICANT COUNT PRIMAL .4000E+O1 DUAL .4000E+O1

SUBTREE FOR NODE G5

G5 2 G7
G7 1 (B) B12 (B) B13
G8 1 (B) B13 (B) B14

SUBTREE BINARY INDICATED IMPLICANT COUNT PRIMAL .4000E+Ol DUAL .2000E+O1

SUBTREE FOR NODE G6

G6 2 (B) B9 (B) B10

SUBTREE BINARY INDICATED IMPLICANT COUNT PRIMAL .1000E+O1 DUAL .2000E+01

The *XEQ run simply yields a minimal basic event family for the fault

tree top node:

IMPLICANTS FOR EVENT TOP

1 B13
2 BIO B9
3 -B1O nil
4 -39 Bil
5 312 B14

CPU TIME FOR RUN .349 SEC.
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The flexibility of FTAP is due to a large variety of options

discussed in the next section; even for simple fault trees, the analyst

will probably wish to include some of these instructions before *TREE

or *XEQ. All options affect a run initiated by a *XEQ instruction.

However, when the *TREE instruction is used, the only options that

are effective are those that modify the fault tree (TRUE, FALSE) or

select gate events for analysis (PROCESS, ALL).

11.4 Option Instructions

The first card of each option instruction contains the option

name in field 1. This initial card will be the only card for all

instructions except TRUE, FALSE, PROCESS, NELSON, and IMPORT. Options

TRUE, FALSE, PROCESS, and NELSON may be continued on subsequent cards

in the same manner as gate node definition instructions, by lenving

fields 1 and 2 blank on continuation cards; the number of continuation

cards is not restricted. The IMPORT option usually consists of more

than three cards but does not utilize the common continuation scheme.

Options other than these also have fields 2 through 8 blank, except

for MAXSIZE, which utilizes field 2.

Any option may be used for a run, but there are certain pairs

of incompatible options, and use of both options is treated by FTAP

as an error. In addition, a particular option may appear no more than

once for a run. But no restriction is placed on the number of

options that may be specified for a run or their input order.

We discuss options according to five functional categories.

f
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11.4.1 Fault Truc Modification (TRUE. FALSE)

TRUE and FALSE permit any gate or basic event variables to be

taken as identically true or false for a run. Node names are entered

in fields 3 through 8 of these instructions, with preceding dashes

signifying complementation; field 2 is blank.

The effect of setting event variables to true or false is

accomplished by constructing a modified version of the input

fault tree. An implicant family generated by FTAP in response to

the *XEQ instruction then applies to this modified tree, as does

tree structure data provided for the *TREE instruction. Nodes

listed on TRUE and FALSE instructions do not appear in the modified

tree, nor do any of their supernodes whose associated event variables

become true or false. Some logic Indicators for gate nodes in

the new tree may, of course, differ from those in the input tree.

As an example, the Figure 5 tree is transformed to the tree of

Figure 6 through the instruction:

Col. 1 21 31

TRUE -G3 B12



771

H ~TOP I
G4I

G6 G5

I G8
I +

B13 B14

FIGURE 61

__ __ __-_ --_ -_ ----_____I-- --
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11.4.2 Gate Event Selection (PROCESS, ALL)

The analyst may wish to obtain implicant families for events

associated with gate nodes other than the input tree top node; this

is achieved by using a PROCESS or ALL instruction. The PROCESS

instruction has gate node names in fields 3 through 8, with dashes

opzionally preceding these names. Field 2 is always blank. The ALL

option consists simply of the string "ALL" in field 1. When the

*XEQ instruction initiates the run, an implicant family is obtained

for x if the name for node u appears without a preceding dashu

on a PROCESS instruction; a preceding dash results in an implicant

family for x ( X_ ) . The PROCESS instruction, in fact, determines

modular structure {M by specifying the set of events Q
j jEM(Q)

The ALL instruction is less selective, and, when used in conjunction

with an *XEQ instruction, provides implicant families for xu for

every gate node u , as well as a family for x if the fault tree--U

contains complementing arcs. With the ALL option, the set Q for

the modular structure is thus either the set G of all gate nodes

or G U (-G)

The ALL option is perhaps more useful when a *TREE instruction

initiates the run. In this case, output from the tree structure

analysis procedure includes information on the modular subtree for

every gate node. On the other hand, the procedure provides modular

subtree information only for nodes corresponding to events in M(Q)

if the set Q is selected through a PROCESS instruction.

- n -
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Wben PROCESS and ALL options are absent, FTAP takes Q to

consist only of the fault tree top node, unless the input fault

tree has more than a single top node. In the latter case, absence

of both instructions is treated as an error. Events in Q which

are identically true or false are messaged at the beginning of run

and excluded from further consideration.

PROCESS and ALL are incompatille, and it is an error to specify

both for the same run.

11.4.3 Methodology Specification (PRIME, ALLNEL, NELSON, MSUP, MSDOWN,
WRKFILES, MSONLY, DUAL, UPWARD, MINCHECK)

Options discussed here affect the manner in which FTAP obtains

implicant families, so these instructions are only meaningful for runs

initiated by the *XEQ instruction. Except for NELSON, these options

consist only of the instruction name in field 1 of a card.

PRIME, ALLNEL, and NELSON instructions signal that the Nelson

method is to be employed in obtaining certain minimal families M

in the modular structure. PRIME Indicates that this method is to be

used only when the modular subtree for event j contains a complementing

arc. PRIME thus guarantees that all families ger.erated for a run consist

of prime implicants; of course, this option has no effect if the input

fault tree is devoid of complementing arcs.
The ALLNEL option, on the other hand, is effective for any input

tree. In this case, the Nelson method is utilized in obtaining all

M in the modular structure.

ij

LI -
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The NELSON option permits the Nelson method to be applied

selectively for events corresponding to node names in fields 3

through 8 of this instruction. That is, if the name for some node

u icurs in one of these fields without a preceding dash, then as

lon• as u E M(Q) M is determiTid by the Nelson method; a preceding

dash has the same effect for M . An event j Il M(Q) selected

by this instruction is ignored, so the analyst should have some

knowledge of M(Q) , perhaps derived from an earlier structural

analysis of the fault tree.

If a modular subtree contains complementing arcs, it is possible

for an event variable associated with the subtree top node to be

identically true or false. The family M for a variable xj which

is identically false is always empty, and FTAP gives this result.

However, if the variable x is identically true, this may not be

apparent from FTAP results unless the Nelson method is utilized in

finding M. . The first task in this method is to find a complete

minimal family Md for the dual modular subtree, and M is empty

if x is true. Should M be empty, FTAP prints an appropriate

message aad terminates the run.

PRIME, ALLNEL, and NELSON are incompatible with each other, and

only one of the three may appear for a run.

Because FTAP automatically makes a reasonable choice between

MSDOWN and MSUP algorithms in finding families M, , the analyst

will not often want to include a MSDOWN or MSUP option for a run.

When the Nelson method is employed for a family , FTAP automatically

chooses the algorithm MSDOWN to first find a complete minimal family

for the, dual modular subtree, but the user may override this choice

-. 1• | I I I II I ' .1 I--



through the MSUP option. When the Nelson method is not employed,

FTAI chooses the MSDOWN algorithm to find M unless implicant

elimination based on size or importance is enabled, in which case

the MSUP method is chosen. Again, either choice may be overriden

through a MSUP or MSDOWN option. Since fields 2 through 8 of

these options are blank, selective application to the families Aj

is not possible. The presenc i of both options for the same run

is treated as an error.

WRKFILES informs the program that sequentially organized file

space on magnetic disk is available for use as working storage.

FORTRAN file numbers 10, 11, and 12 must be assigned if this option

is used. This storage is only available to subroutines that imple-

ment the dual algorithm. Though MSDOWN and ORDOWN methods both

employ the dual algorithm, magnetic disk storage, when necessary,

will most often be utilized in application of the Nelson method to

large modular subtrees. Thus, the WRKFILES option will usually appear

in conjunction with ALLNEL, PRIME, or NELSON. If the WRKFILES option

has not been used for a run which must be terminated because of

insufficient working space in main memory, a message may be printed

suggesting that main memory could have been supplemented by magnetic

disk storage. In this case, it is reasonable for the analyst to try

a rerun with a WRKFILES instruction.

Once the modular structure has been found, the procedure for

finding implicant families in terms of basic events is very efficient

computationally, but for large fault trees, this final step might

require a great deal of main memory workspace. The MSONLY option
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instructs FTAP to bypass this step, so only the modular structure

is determined. This instruction will also lead to more efficient

use of main memory in obtaining the modular structure, since families

M need not be retained once they have been printed. Also, FTAP

includes a subroutine which, when provided with the family M in

terms of largest simple modules for j , counts the number of implicants

in the minimal basic event family (without deriving this family).

Separate counts are accumulated by implicant size and printed by the

subroutine. If MSONLY is specified, the routine is called for each

j s M(Q)

The DUAL option simply indicates that all implicant families

for a run are to be derived for the dual of the input fault tree.

Thus, if an implicant family associated with the primal tree consists

of system cut sets, a corresponding minimal path set family is obtained

by using the DUAL instruction.

The UPWARD option invokes an algorithm not explicitly stated

in Part I. This method closely resembles the MSUP algorithm: The

general MSUP technique is applied to the entire fault tree rather

than a modular subtree, with basic events replacing largest simple

modules. Thus implicant families are generated directly in terms of

basic events without utilizing the modular structure. The UPWARD

option may be useful when the required minimal implicant families

in terms of basic events are expected to be small, which might be

the case even for large fault trees if size and importance elimination

options are included for a run. Because the modular structure is not

determined when this option is specified, certain other options are
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incompatible with UPWARD. These are NELSON, PRIME, MSDOWN, MSUP,

MSONLY, MODSIZE, MSPRINT, and MSPUNCH, the last three of which

we will consider shortly.

The MINCHECK instruction is only effective when it accompanies

the UPWARD option. MINCHECK specifies that minimization only be

applied to implicant families for events in the set Q determined

by PROCESS or ALL options, or in the absence of these options, to

the family for the fault tree top node. Thus, intermediate families

generated for events that are not of interest to the analyst are not

minimized.

11.4.4 Control of Printed and Punched Output (MSPRINT. STATUS,
DSTATUS, PUNCH, MSPUNCH, NOPRINT)

These options control output information regarding implicant

families and are effective only for runs initiated with a *XEQ

instruction.

MSPRINT instructs FTAP to include the modular structure families

in printed output. This option is unnecessary when MSONLY is

provided, because MSONLY also enables printing of the modular structure.

As an illustration, suppose the ENDTREE card for specification of the

Figure 5 tree is followed by the instructions:

MSPRINT

*XEQ

Modular structure output is then:
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IMPLICANTS IN TERMS OF LARGEST SIMPLE MODULES

IMPLICANTS FOR EVENT G6

I. B10 B9

IMPLICANTS FOR EVENT -G6

1 -B9
2 -B10

IMPLICANTS FOR EVENT G5

1 B12 B14

2 B13

IMPLICANTS FOR EVENT TOP

1 G5 rl
2 G6
3 -G6 BI1

The STATUS option yields information on the progress of generat-

ing each minimal implicant family, giving the number and maximum

size of implicants in various intermediate families, as well as data

on computation times and the amount of unused main memory. STATUS :

provides a brief record of each iteration of the MSDOWN method. As

an illusftration, consider the instruction group:

MSPRINT

STATUS

*XEQ

A sample of the output for the event TOP modular structure family

from a run initiated by these instructions is as follows:

I ! II II I! l
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LARGEST SIMPLE MODULES FOR TOP
G5 BII G6

EVENT TOP DOWNWARD

NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 1
NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 2
NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH I
MINIMIZATION

3 MAXIMUM LENGTH 1
NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 2
MINIMIZATION

3 MAXIMUM LENGTH 2
UNUSED STORAGE BEGINS AT 361 CPU TIME FOR EVENT .070 SEC

IMPLICANTS FOR EVENT TOP

1 G6
2 G5
3 -G6 Bll

STATUS information for the Nelson method is similar to the above,

except the various "downward" lines refer to implicants for the dual

subtree, and data on the number and size of implicants obtained from

the dual algorithm precedes storage and time data.

Information for the MSUP method is somewhat different. The run

instructions

MSPRINT

MSUP

S &ATUS

*XEQ

give this output for the event TOP modular structure family:

jil
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LARGEST SIMPLE MODULES FOR TOP
G5 811 G6

EVENT TOP DOWNWARD

NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 1
MINIMIZATION 3 MAXIMUM LENGTH 1

EVENT G2 DOWNWARD ---

NUMBER OF IMPLICANTS IN TABLE 1 MAXIMUM LENGTH 1

EVENT G4 DOWNWARD

NUMBER OF IMPLICANTS IN TABLE I MAXIMUM LENGTH 2

EVENT G4 UPWARD h
NUMBER OF IMPLICANTS IN TABLE 1 MAXIMUM LENGTH 2

EVENT G2 UPWARD -

NUMBER OF IMPLICANTS IN TABLE i MAXIMUM LENGTH 2

EVENT TOP UPWARD - - -

NUMBER OF IMPLICANTS IN TABLE 3 MAXIMUM LENGTH 2
MINIMIZATION 3 MAXIMUM LENGTH 2

UNUSED STORAGE BEGINS AT 387 CPU TIME FOR EVENT .129 SEC

IMPLICANTS FOR EVENT TOP

1 C6
2 G5
3 -G6 BIlI

The "downward" information now represents successive applications of

the ORDOWN algorithm to events TOP, G2, and G4. These events are then

considered in upward order, as the family for TOP in terms of largest

simple modules is generated. The "upward" information format is also

used in a rather obvious way to chart the progress of constructing

basic event families, whether this construction proceeds from the

modular structure or in the manner associated with the UP1JARD option.
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DSTATUS causes the subroutine package for the dual algorithm

to provide data on the sizes of various tables associated with that

algorithm. This data is only printed when the Nelson method is used

and the subroutine package is applied to the implicant family for a

dual modular subtree. Some familiarity with Reference [17] is required

to interpret this output.

PUNCH and MSPUNCH options allow implicant families to be punched

on 80-column cards for input to other programs. FORTRAN file number 7

should be assigned to the card punch (or magnetic disk) if these

instructions are used. Events associated with the input fault tree

are represented by positive and negative integers punched output,

and whenever the MSPUNCH option is used, this numbering scheme is the

same as suggested in Part I. MSPUNCH enables punching of the modular

structure, and determines that, for the q nodes of the input fault

tree, integers 1 to p are to represent gate nodes on punched output

and p + I to q are to represent basic nodes. The PUNCH option

causes basic event families to be punched. Unless MSPUNCH accompanies

the PUNCH instruction for a run, integers 1 to q - p number basic

nodes on output.

When either MSPUNCH or PUNCH is used, the firsr group of puvched

cards for a run gives the correspondence between node names and numbers.

The initial card of the group has the FORTRAN format (5HNAMES,15),

where the single integer field contains the number of names (which will

be q if MSPUNCH is specified and q - p if only PUNCH is specified).

On the remaining cards node numbers are paired with node names, with

up to five pairs appearing on a card in the format (5(15,3H - ,AS)).
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The modular structure, if reque.sted, is given by the next group

of cards, whose initLia card has a (5HIMPMS,15) format, containing

the run number in the integer field. The representation of each

family M then begins with a (5HEVENT,15,16) format header card,

having the positive or negative integer j in the first field arid

the number of implicants in the family in the second. Following

the header card, each impllcant of the family starts on a separate

card witha (1615) format and may continue on additional cards with

the same format. On the first card for an implicant, field 1 always

contains the number of events in the implicant. These events are

represented in fields 2 through 16 of the first card and 1 through 16

on subsequent cards.

Output for basic event families is preceded by a (5HIMPBE,I5)

format card, with the run number in the integer field. The general
,I

format for representing these families follows that of the modular

structure, where the basic event families U j take the place of
i jEQ

j . Again, Q either contains the fault tree top node or

events indicated by a PROCESS or ALL instruction.

Finally, the analyst may sometimes wish to obtait, punched output

but suppress printed output for large basic event families. In such

cases, the NOPRINT option should accompany the PUNCH option. NOPRINT

only suppresses printing of basic event families and does not affect

the MSPRINT option.

I:
?. ~
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11.4.5 Implicant Elimination Based on Size and Importance (MAXSIZE,
MODSIZE, IMPORT)

These options are compatible with all of the algorithms MSDOWN,

MSUP, and Nelson, as well as the method associated with the UPWARD

instruction. If size or importance options are included for a run

and options MSDOWN, PRIME, ALLNEL, and NELSON are absent, the MSUP

algorithm is chosen automatically by FTAP, even foli modular subtrees

containing complementing arcs. However, it has been pointed out in

Part I that when the MSUP method is applied to a subtree with cum-

plementing arcs, the resulting subfamily of size or importance

restricted sets may not be meaningful. Thus, in utilizing these

options, the analyst will usually want to insure that the Nelson

method is employed for such subtrees.

The MAXSIZE option imposes a uniform size restriction on implicants

in the modular structure and basic event families generated by FTAP.

Field 2 of this instruction gives the maximum number of events permitted

in an implicant; a positive integer may appear anywhere in the field.

Fields 3 through 8 of the card are blank.

As discussed in Part I, modular size importance is often a more

efficient criterion for implicant elimination than a simple size

restriction. This criterion is applied in the manner suggested in

Subsection 1.3.2, which we briefly recall: The subfamilies {M'}
I -~M(Q)

are generated in "upward" order, with M constructed following
IC

families for subevents of j . An implicant M is retained in M'

only if c o(m) does not exceed the fixed size restriction, where
meM

a(m) - . if m is a basic event, and for m a gate event, o(m) is

iI
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available from an earlier computation which foillowed construction

of M' , i

min~ a(k) (Mil , 0)
KEW' krKm

FTAP implements elimination based on modular size importance when

the MODSIZE option accompanies MAXSIZE; in this case, MAXSIZE specifies

the fixed size restriction. MODSIZE is not effective in the absence

of the MAXSIZE option.

FTAP also allows for implicant elimination based on the product

importance criterion. Here an implicant M is retained in M' only

if NT i(m) exceeds some critical value c , where t(m) is an
mrM

arbitrary value between 0 and I for in a basic event, and for

m a gate event, 1(m) has been determined from

ma ( r i(k) (NM 0)
KtM'\k•K / m

The criterion is applied again when basic event families are obtained

from the modular structure.

The product importance option requires a group of cards to

specify the values i(.) for basic events and the critical value c

The first card of the group contains only the option name "IMPORT"

in field 1; other fields are blank. Cards which assign i(.) values

follow this initial card. These cards always have field 1 blank,

a positive decimal value between 0 and I in field 2, and basic I

event names in fields 3 through 8, with optional dashes preceding these

latter fields. The value in field 2 may be in FORTRAN E or F ,!

r'



91

format and must contain a decimal point. An F-format item, such

as .5 or .001, may appear anywhere within the field, but E-format

items, such as 1.25E-2 or .lE-l, must be right-justified. Should the

name for basic node u appear on a card, t(u) is assigned the

value in field 2 of that card when the name is not preceded by a dash;

a preceding dash causes the field 2 value to be assigned to t(-u)

As many cards as desired may be used to set tL() values, but it is

not required that values be provided for all basic events: FTAP assigns

t(k) a default of 1 for any event k not represented on one of

these cards.

The card that must terminate the product importance group has the

string "LIMIT" left-justified in field 1 and a decimal value between

0 and 1 again in field 2. Fields 3 through 8 are blank. The field

2 value is the critical value c for the importance test.

As a simple illustration of the above options, suppose for the

example tree, the analyst desires only prime implicants consisting of

a single basic event, and implicants involving node B9 are not of

interest. Suitable cards for this run are:

Col. 1 1i 21 31

MAXSIZE i
IMPORT

.4 B9 -B9
LIMIT .5
PRIME
*XEQ
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11.5 Program Implementation

FTAP is available in two distinct versions that differ only in

the internal storage format for representing implicant sets. FTAPl

stores an implicant as a variable number of consecutive computer

words in main memory. The first word of the group contains the

integer number of events in the set, and a positive or negative

integer value in each of the remaining words identifies an implicant

event. FTAP2, on the other hand, stores an implicant set as a fixed

group of consecutive words, and a fault tree event is associated with

a unique bit position in one of these words. Bit positions corre-

sponding to events in the implicant contain the value 1, whereas

other bit positions contain 0. The fixed number of words required

for an implicant set depends on the computer word length, the particular

stage of FTAP processing, and whether the input fault tree contains

complementing arcs. When modular structure families are constructed

for a fault tree without complementing arcs, the number of words must

be sufficient to accommodate one bit position for each gate and basic

node. Fur fault trees with complementing arcs, two bits are needed

for a node, one for each event associated with the node. When basic

event families are constructed, the situation differs only on the

fact that bit positions are not needed for representation of gate

events.

FTAP2 is the more efficient of these two versions in terms of

computation time and should be chosen for most applications. However,

for large fault trees (having, say, more than 200 gate nodes), it is

often feasible only to obtain implicants having a small number of events.

The storage format of FTAP1 becomes an advantage in such applications.
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FTAP1 and FTAP2 are designed for use on most general purpose

computers. The codes have been carefully prepared to ensure that

program logic is tight and efficient, and subroutines for minor

tasks such as sorting and searching use good standard algorithms,

as given in (9]. The FORIRAN portion of each program conforms to

ANSI specifications, except for array subscripts, which are apt to

consist of expressions using two or more simple FORTRAN integer

variables with addition, subtraction, and multiplication operations,

and sometimes the integer absolute value operation. Most FORTRAN

compilers allow such expressions.

Main memory work space for either code is confined to one single

subscripted integer array, denoted by the FORTRAN name IA. Storage

in this array is dynamically allocated for maximum efficiency in use

of main memory. Because fault trees of appoximately the same size

may differ considerably in their structure, it is difficult to state

even roughly how large IA should be to accommodate analysis of a

fault tree with some given number of nodes. The analyst should make

TA as large as feasible for the environment in which the program is

implemented; for instance, if the program is required to execute in

a fixed partition of computer main memory, then the object code length

plus storage for IA should fill the partition. If the environment is

such that program use becomes more inconvenient as storage requirements

increase, an Liitial length of IA should be chosen perhaps between 300

and 1000 times the maximum number of gate nodes in any tree to be

analyzed; this length may then be increased as necessary.

Implementation of FTAPl or FTAP2 is accomplished according to

the following steps:
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1. The desired dimension of the array IA should be set in

the declarative statement for this array near the beginning

of the main program. Since the code must be capable of

determining when storage requirements exceed availability,

the length of the array must be provided for internal program

use. This is done by initializing the variable IASIZE

through a FORTRAN DATA statement, which also appears near

the beginning of the main program.

2. The first executable statement in the main program for FTAP2

assigns a positive integer value to the variable LWORD. This

value should be set to the length of a computer word less one.

3. When accessed by other routines, the REAL function TIME returns

the amount of elapsed time since the beginning of the computer

job. The proper form of the subroutine CALL statement in

function TIME may depend on the particular computer installation,

and this statement should be modified accordingly.

4. The group of assembler language routines should be chosen to

correspond to both the computer and FORTRAN compiler used.

Three groups of assembler language routines are supplied

v ith FTAPI or FTAP2: for use with (1) CDC 6600/7600 machines

atid RUN compiler linkage convention, (2) CDC 6600/7600

machines and FTN compiler linkage convention, or (3) IBM 360/370

machines (G or H compiler linkage convention). To implement

FTAP1 or FTAP2 on other machines, one or more assembler routines

must be prepared according co specifications given in the

i�following section.
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11.6 Specifications for Assembler Routines

The routines discussed in this section are all very simple,

and the largest should not require many more than 25 statements in

any assembler language. FTAP1 utilizes only routine CCM, but all

routines are accessed by FTAP2.

1. CCM(IWI, IW2, ITEST):

CCM logically compares the contents of computer words IWI and

IW2 and returns the result of the comparison in word ITEST. If

contents of IWI and IW2 are identical, then ITEST will contain a 0

otherwise the value in ITEST depends on the highest bit in which the

words differ. When this bit is 1 in IWl and 0 in IW2, ITEST

is returned as 1 ; in the reverse situation ITEST is returned as -1

2. ORM(IW1, IW2, 1OR):

The contents of word IOR returned by this routine is simply a

logical OR of words IWl and IW2.

3. ANDM(IWI, lW2, IAND):

ANDM returns in word IAND the result of a logical AND of IWM

and IW2.

4. PUTM (LV, IV, IW):

When PUTM is accessed, IV is an array of successive words containing

positive integer values in increasing order. No value exceeds the

number of bits in a computer word. The location LV contains a positive

integer representing the length of IV. The function of PTUM is to
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place a 1 in each bit position of word IW numbered by an integer

in array IV; other bit positions are set to 0 . As an example,

suppose the computer word length is 16, and PV'TM is accessed with 4 I
in LV, and IV(1) through IV(4) contain, respectively, 2, 5, 7, and 16.

On return, IW then contains the bit pattern "100000000lOlO010."
I

The bit numbering for this example is increasing from right-to-left.

5. GETM (IW, LV, IV)!

GETM performs the reverse operation of PUTM. On return, IV is

a vector of consecutive words containing bit numbers for all bits

that are 1 in word IW. These integers are in increasing order in

IV, and the number of integers in this vector is returned in LV.

GETM may be accessed with IW having 0's in all bit positions, in

which case LV is returned with an integer value of 0

6. BCM (IW, NBITON):

BCM returns in NBITON the count of bit positions containing 1

in word IW. The value in NBITON is thus an integer between 0 and

the number of bits in a computer word.
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